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I. INTRODUCTION

In this notes we consider the semiclassical approxima-
tion (SA) in Quantum Mechanics. Though this approx-
imation is presented in the most of textbooks on Quan-
tum Mechanics, there is hardly any other topic which
arises so many confusions. Often the authors know the
correct result, but the derivation is impossible to under-
stand. Even such brilliant textbooks as Landau and Lif-
shitz (1) and by Merzbacher (2) did not avoid substantial
omissions and inaccuracies. Some special questions, es-
pecially related to the multi-dimensional version of the
SA can be found in the book by Zeldovich and Perelo-
mov (3). There exists a waste mathematical literature
on the subject from which I can recommend the book
by Maslov and Fedoryuk (4). Unfortunately this litera-
ture is not very useful for physicists because of excessive
mathematical rigor and abundance of notations.

On the other hand, the SA plays a special role in
Quantum Mechanics since it demonstrates in a simple
analytical form basic phenomena: energy quantization,
quantum tunnelling, resonance scattering and tunnelling,
overbarrier re�ection, Aharonov-Bohm e¤ect. Its time-
dependent modi�cation, adiabatic approximation, allows
to solve many problems in atomic and molecular physics
and leads to mportant notions such as the Berry�s phase.
L. Landau and C. Zener proposed a simple theory of tran-
sitions at avoided two-level crossing, which plays funda-
mental role in theory of chemical reactions, atomic scat-
tering, interaction of atoms with the resonant laser �eld,
dynamics of disordered systems, quantum computing etc.
Besides that, the SA gives the energy spectrum with a

reasonable accuracy even in the range where its validity
is not guaranteed. It allows to calcualate energy density
for many systems including deterministic systems with
chaotic spectrum and random systems. It is worthwhile
to remind that the initial form of quantum theory of the
atom by N. Bohr can be treated just as semiclassical ap-
proximation from the point of view of modern Quantum
Mechanics.
In these notes we use the following system of refer-

ences: equations inside a subsection are enumerated by
the letter of the subsection and their numbers. An equa-
tion from another section is referred additionally by the
section number.

A. Historical remarks.

Semiclassical approximation in Quantum Mechanics
was formulated independently by G. Wentzel (Germany),
H. Kramers (Holland) and L. Brilloin (France) in 1927
and was coined as the WKB approximation. In many
books and articles this abbreviation is appended by the
letter J from the left, honoring an English mathematician
H. Je¤rys, who developed the approximation in 20th cen-
tury. However, essential ideas of this approximation were
formulated in the beginning of the XIX century by the
famous mathematicians Cauchy and Bessel. Very im-
portant features of the SA were discovered by Stokes,
who studied properties of the so-called Airy equation in
the middle of the 19th century. The SA was applied
to physical acoustic by Lord Rayleigh in the end of the
XIX century. H. Poincare has formulated the SA as a
series expansion and Borel proposed a general method
of summation for these divergent series in the beginning
of the 20th century. Thus, the question already had a
long history when Quantum Mechanics was formulated
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in 1925-1926.
The semiclassical approximation was developed by

many people afterwards. The names of G.Gamov, H.
Furry, E. Kemble, V. Fock, L. Landau, C. Zener, V.
Maslov, I. Keller, M. Berry, M. Kruskal, M. Gutzwiller
must be mentioned. The semiclassical approximation is
still not exhausted. New essential results were obtained
quite recently.

II. SEMICLASSICAL APPROXIMATION

A. De�nition and criterion of validity

This is approximation of a short de Broglie wave-length
�. Namely, the necessary condition for this approxima-
tion reads: � << L, where L is a characteristic length
for variation of potential V (r). In classical mechanics it
is possible to determine the dependence of the momen-
tum modulus p on coordinate r at a �xed value of energy
E: p(r) =

p
2m(E � V (r)). The local value of the de

Broglie wavelength is � (r) =2�~=p(r). In terms of the
local wavelength the explicit validity criterion for semi-
classical approximation reads:

j r� j= � j rV j
j(E � V (r))j << 1 (A1)

It means that the variation of the potential energy at the
wavelength is small in comparison to the kinetic energy.
It is clear from the inequality (1) that the semiclassi-
cal approximation regularly fails near classical turning
points at which E = V (r). The semiclassical approxi-
mation (SA) often allows to study qualitatively and even
quantitatively e¤ects, otherwise hopeless for an analyti-
cal solution.

B. One-dimensional case: Intuitive consideration.

We start with the simple case of one dimension. As
we discussed in subsection A, the wavelength � or mo-
mentum p varies slowly in space. If it does not change at
all, the wave-function for a wave propagating to the right
(left) would be  �(x) = Ce�ipx=~. Since p(x) changes
slowly, this dependence is valid only locally. It means
that on passing a distance �x, small in comparison to L,
but possibly larger than �, the phase of the wave-function
is changed by �p(x)�x=~. Summing up many such con-
tributions, we arrive at wave-functions of the type:

 � = C(x) exp(�i
Z x

x0

p(x0)dx0=~) (B1)

It can be shown that, at varying p(x), the former constant
C(x) becomes also a slowly varying function of x. Indeed
for the wave-functions B1 the current j reads:

j� =
~
2mi

�
 ��

d �
dx

�  �
d ��
dx

�
= �p(x)

m
j C2(x) j

(B2)
For stationary Schrödinger equation (SE) the current is
constant. Therefore C(x) = C=

p
p(x). Thus, we have

found two independent solutions corresponding to prop-
agating waves as

 �(x) =
1p
p(x)

e
�i
R x
x0
pdx0=~

; p =
p
2m(E � V (x))

(B3)
A general solution of the SE must be an arbitrary lin-
ear combination of the two independent solutions (B1).
Looking at them, we see that they formally diverge at
classical turning points, at which V (x) = E and p(x) = 0.
Note, that they are regular points of the SE and the solu-
tions have no singularity at them. It is the approximation
that becomes invalid near them.
Sometimes we will use the wave-vector k(x) = p(x)=~

to simplify formulae:

 �(x) =
1p
k(x)

e
�i

xR
x0

kdx

(B4)

C. One-dimensional case: Formal derivation

It is useful to derive the asymptotic equation (B3) for-
mally to estimate their precision. Let us right down the
Schrödinger equation (SE) in the form:

~2
d2 

dx2
+ p2(x) = 0; p2(x) = 2m(E � V (x)) (C1)

We introduce a new sought function S(x) by a following
substitution:  (x) = eiS=~. Then equation (C1) reads:

�
dS

dx

�2
� i~d

2S

dx2
= p2(x) (C2)

This nonlinear di¤erential equation is equivalent to the
linear SE (C1). We solve it approximately by expanding
S into a formal power series in ~:

S = S0 + ~S1 + ~2S2 + ::: (C3)

Plugging (C3) into (C2) and keeping only terms indepen-
dent on ~, we �nd:

�
dS0
dx

�2
= p2(x);

dS0
dx

= �p(x) (C4)

or:
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S0 = �
xZ

x0

pdx (C5)

This is the classical action for one-dimensional motion.
Retaining in the next approximation terms linear in ~,
we �nd:

2
dS0
dx

dS1
dx

= i
d2S0
dx2

(C6)

or:

S1 =
i

2
ln p(x) + c (C7)

Substituting (C5) and (C7) into  = eiS(x)=~, we arrive
again at the solution (B3). To estimate a correction to
it, we �nd S2. In the same way:

dS2
dx

=

"
�
�
dS1
dx

�2
+ i

d2S1
dx2

#
�
�
2
dS0
dx

�
The correction to action is:

~S2 = ~
Z x

x0

3p
02 � 2pp00
8p3

dx = o

�
~
pL

�
= o

�
�

L

�
(We accepted that each derivative contributes 1=L, the
integration contributes L). Thus, the second correction
is small.

D. Quantum penetration into classically forbidden region

A classical particle can not penetrate into the region
in which V (x) > 0 since it violates the energy conserva-
tion. The quantum particle can be found in classically
forbidden range because the coordinate is not compatible
with the energy. When coordinate is �xed the energy is
uncertain. The e¤ect of penetration is incorporated in
the semiclassical approximation. Indeed at V (x) > E
the square of momentum p2(x) becomes imaginary. But
still the two solutions (B3) are valid. One of them expo-
nentially decreases in the classically forbidden region, for
example:

 � =
1p
j p j

exp

0@� xZ
x0

j p j dx0=~

1A (D1)

This solution corresponds to the quantum penetration of
a particle. Another solution  + grows exponentially with
x growing. Often it can be rejected from a physical point

x0

x

V(x)

Classically forbiddenClassically allowed

E

FIG. 1 Quantum penetration into classically forbidden area.

of view. Still it is the second independent solution of the
linear di¤erential equation (C1) and plays an important
role in the general treatment. Sometimes it contributes
to the solution of a speci�c physical problem. Note that
in the classically forbidden region the increasing solution
( +) is exponentially large and an admixture of the de-
creasing solution with a not too large coe¢ cient can be
neglected on its background. On the other hand, a simi-
lar addition of the increasing solution  + to a decreasing
one changes the latter drastically.

E. Passing the turning point

A semiclassical solution may be chosen in such a way
that it decreases exponentially, to say, right from a turn-
ing point x0 and oscillates left from the turning point
(see Fig. 1). Since it is real and its normalization is free,
we can choose it in a form:

 (x) =
1p
j k j

e
�

xR
x0

jk(x0)jdx0

; x > x0 (E1a)

 (x) =
Ap
k
cos

0@ xZ
x0

k(x0)dx0 + '

1A ; x < x0(E1b)

The problem is to �nd the constants A and '. It can
not be done by direct matching of two expressions for
 (x) at the point x0 since both are invalid in a close

vicinity j x � x0 j�
�

~2
2mV 0

0

�1=3
s (�2L)1=3, where

V 00 = jdV=dxjx=x01 . A standard way of �nding A and

1 Please, check that the semiclasiccal approximation is invalid in-
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' proposed �rst by Kramers and accepted by most text-
books consists of approximation of the local kinetic en-
ergy E�V (x) near x0 by the linear function V 00(x0�x).
The SE with the linear potential is called Airy equa-
tion. It allows an exact solution in terms of special func-
tions (Airy functions) which can be reduced to Bessel
functions with the index 1/3. This solution, valid in a
vicinity of the turning point jx � x0j � L, should be
matched with the asymptotic (1a) and then it gives A
and ' in the asymptotic (E1b)2 . This way seems, how-
ever, to be too complicated given such a simple answer
(A = 2; ' = �=4). We prefer another way due to H.
Furry, in which no other functions besides the semiclassi-
cal asymptotics are involved. The price for this simplicity
is that the solution must be considered in the complex
plane of the variable x.
The idea is to pass around the �dangerous� turning

point x0 in the complex plane of coordinate x along a suf-

�ciently remote circle j x�x0 j>>
�

~2
2mV 0

0

�1=3
, so that the

semiclassical approximation is valid everywhere on this
path. The potential V (x) is assumed to be an analytical
function in a vicinity of the turning point x0. We still
can choose j x� x0 j<< L to retain the linear expansion

E�V (x) = V 00(x0�x). The value k �
p
2mV 0

0

~
p
x0 � x is

imaginary at x > x0 and real at x < x0 on the real axis
x. Let us consider the function

S(x) =

Z x

x0

k(x0)dx0 =

p
2mV 00
~

� 2
3
(x0 � x)3=2

It is real on 3 rays arg(x� x0) = ��=3; � (solid lines on
Fig. 2) and imaginary on another 3 rays, the bisectors of
angles formed by the �rst 3 rays (dashed lines on Fig. 2).
The latter are called Stokes lines. They are lines of the
fastest decrease (or increase) of the solutions (steepest
descent lines in topographical terms). On the solid three
rays the solutions oscillate. We will call them anti-Stokes
lines.

We start with the solution (E1), which decreases expo-
nentially along the Stokes line 1. On the Stokes line 1 it
can be written as an analytic function:

 (x) =
ei�=4p
k
exp

0@i xZ
x0

kdx0

1A (E2)

side the interval determined by this inequality and that it is valid
outside.

2 Two regions de�ned by inequalities jx� x0j � L and jx� x0j �
(�2L)1=3 overlap. Inside the overlapping region both approxi-
mation are valid and should match.

1

2

3

1’

2’

3’

C

C’

FIG. 2 Stokes lines near a turning point.

We assumed that arg k = �=2 along the Stokes line 1.
The phase factor ei�=4 makes the solution (E2) real on
the real axis. Let the point x pass around the turning
point x0 along the contour C in the upper half-plane of
the complex variable. Until the contour crosses Stokes
line 2, the solution (E2) grows exponentially and an ad-
mixture of the second, decreasing exponent on its back-
ground is negligible. However, in the interval between the
Stokes line 2 and real axis at x < x0 the exponent (E2)
decreases and uncontrolled appearance of the second ex-
ponent is possible. Thus, on the real axis at x < x0 (the
anti-Stokes line 1�) the solution is a superposition of the
solution (E2) multiplied by a constant and the complex
conjugated solution multiplied by a complex conjugated
constant (both are oscillating solutions). We will argue
that both above mentioned constant factors are equal to
1. Indeed the exponent (E2) (right-propagating wave)
grows when moving from the anti-Stokes line 1�toward
the Stokes line 2. Therefore, only this wave determines
the asymptotic on the Stokes line 2 and they must co-
incide. Let us now make a similar operation passing
along the contour C 0 in the lower half-plane. We ar-
rive at the Stokes line 3 with the same solution (E2)
and can guarantee that it will contribute to the solu-
tion on the real half-axis x < x0 with the same coef-
�cient 1. But this solution di¤ers from that obtained
by passing along the contour C. Indeed, near the turn-
ing point k(x) s

p
x0 � x = ei�=2

p
x� x0. We assumed

that arg k = �=2 at x > 0. Then arg k = � when arriving
x < x0 along the contour C and arg k = 0 when arriv-
ing x < x0 along the contour C 0. Thus, we have found
both waves, traveling right and left in classically allowed
region x < x0. Collecting them, we obtain:

 (x) =
2p
k
cos

0@ xZ
x0

kdx0 + �=4

1A (E3)
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Equation (E3) establishes A = 2 and ' = �=4 for our
solution (E1b). This was done for the case when the clas-
sically forbidden region is located right from the turning
point. In the opposite case with the same method it can
be found that A = 2, but ' = ��=4 (please, check it
yourself). Note the meaning of the Stokes lines: they are
the lines where the asymptotics change: instead of one
exponent a linear combination of two exponents appears.
The rule of the circulation around the isolated turn-

ing point can be reformulated in the following way.
Let a solution of the SE be an oscillating exponent

 (x) = k�1=2 exp

"
i
xR
x0

kdx

#
on a ray along which the ac-

tion S(x) =
xR
x0

pdx is real (we will call them anti-Stokes

lines). Then on a neighboring anti-Stokes ray it is the
same exponent if it is exponentially small in a sector be-
tween these two rays. If the exponent is large between the
two anti-Stokes rays, then on the second ray the solution
is a linear combination of two oscillating exponents:

 (x) =
1p
k

24exp(i xZ
x0

k(x0)dx0 � i exp(�i
xZ
x0

k(x0)dx0)

35
(E4)

The sign in (4) depends on the direction of rotation. It
is � for counter-clockwise rotation.

F. The Bohr�s quantization rule

Consider a particle con�ned in a potential well. Let a and
b are classical turning points (see Fig. 3). The con�gu-
ration of the Stokes and anti-Stokes lines for this case is
shown in Fig. 4. The wave function  (x) must decrease
exponentially at x < a and x > b. According to the gen-
eral rule of passing the turning point, the wave function
in the classically allowed region reads:

 (x) =
2p
k
cos

0@ xZ
a

k(x0)dx0 � �

4

1A (F1)

On the other hand, the same wave function can be writ-
ten as

 (x) = C � 2p
k
cos

0@ xZ
b

k(x0)dx0 +
�

4

1A (F2)

Equations (F1) and (F2) can be valid simultaneously only
if C = �1 and

xZ
a

k(x0)dx0 � �

4
=

xZ
b

k(x0)dx0 +
�

4
+ n� (F3)

x

V(x)

a b E

FIG. 3 Wave function of a particle in a potential well

a b 1b

2b

3b 2’b

3’b

1’b1’a
1a

2a

3a

3’a

2’a

FIG. 4 Stokes lines at Bohr�s quantization.

where n is an integer. From equation (F3) we immedi-
ately �nd:

bZ
a

k(x)dx = (n+
1

2
)� (F4)

or:

bZ
a

p(x)dx = (n+
1

2
)�~ (F4�)

This is the famous Bohr�s quantization rule which deter-
mines the energy of a level En as a function of its number
n. Another meaning of the integer n is the number of
half-waves between the turning points or the number of
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zeros of the wave-function in the classically allowed re-
gion a < x < b. The semiclassical approximation is valid
if n >> 1. But for practical purposes and for not too
sophisticated potential the quantization rule (F40) gives
rather good approximation even for the ground-state en-
ergy (n = 0).
The doubled value of integral (F40) is the action taken

along the closed classical trajectory S(E):

S(E) =

I
p(x)dx

Bohr conjectured in 1913 that the action S(E) is quan-
tized in units of the Planck constant h = 2�~. He applied
his conjecture to the spectrum of the Hydrogen atom and
was able to reproduce the empirical Rydberg formula for
frequencies:

!n;n0 =
me4

2~3

�
1

n2
� 1

n02

�
(n < n0)

He quantized only circular orbits, but his answer for the
Hydrogen spectrum was exact. It was discovered by A.
Sommerfeld, who quantized elliptic orbits. The Bohr
spectrum was derived rigorously by Schrödinger 13 years
later, when he solved his equation for the Coulomb at-
tractive potential.

G. An excursion to classical mechanics

The reciprocal to S(E) function E(S) can be consid-
ered as the Hamiltonian in terms of the variable action.
It is straightforward to prove that

@H(S)

@S
=
@E(S)

@S
=

!

2�
= � (G1)

where ! is the cyclic frequency of the orbital motion and
� is the ordinary frequency. Indeed, calculation of the
inverse value gives:

@S

@E
=

I
@p

@E
dx =

I
mdx

p
=

I
dx

v(x)
= T (G2)

Here we used p =
p
2m(E � V (x)) and p=m =v, where

v(x) is the local velocity and T is the period of motion.
Equation (G1) follows from (G2) and a trivial relation-
ship T = 1=� = 2�=!. A very transparent form of equa-
tion (G1) is:

@En
@n

= ~! (G3)

which simply means that the classical frequency of the
periodic motion determines the energy di¤erence between
nearest levels.

What is a variable � canonically conjugated to S ? In
the Hamiltonian formulation of classical mechanics � and
S must satisfy canonical equations:

�
� = @H

@S�
S = �@H

@�

(G4)

Thus, for the Hamiltonian of a periodic 1-dimensional
motion, the action S is the integral of motion and � is
the phase of motion which changes by 1 for a period.
The variable ' = 2�� is the cyclic phase. The pair of
variables � and S is similar to the pair of variables x and
p. Therefore, their quantum commutator is the same:

[S; �] = ~=i (G5)

Keeping in mind that S t 2�~n and � = '=2�, we �nd
the commutator for n and ':

[n; '] = 1=i (G6)

It is identical with the commutator of the number of
�phonons� n and the phase ' for the quantum oscilla-
tor problem. Thus, the energy and the phase can not be
measured simultaneously.
In classical mechanics the action is an adiabatic in-

variant. It means that it is approximately invariant if
parameters of the Hamiltonian, such as the mass m or
the potential V (x), vary slowly in time. We call a value
A(t) slowly varying if its variation for the period T is

small in comparison to A, i.e.,

���� �A=A���� << �. When the

Hamiltonian depends on time, it can not be function of S
only since the energy is not more conserved. Therefore H
depends on � as well and the second equation of motion
now reads:

�
S = �@H

@�
(G7)

However, H is necessarily a periodic function of � with
the period 1. It can be represented as a Fourier-series
constructed by sin(2�n�) and cos(2�n�) with coe¢ cients
slowly varying in time. Averaging equation (G7) over

one period of rotation, we �nd h
�
Si = 0 since average of

derivative of a periodic function is zero. Note that the
phase � is not an adiabatic invariant since the derivative
of the Hamiltonian by S generally has zero harmonic,
i.e. a term independent on �. Its main part is given byR
!(t)dt, but in the case of slowly varying parameters

there exists an additional part in zero harmonic propor-
tional to the derivative @2H

@S@R (see section IV.C).
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a b tr

FIG. 5 Quantum tunneling under a barrier.

H. The under-barrier tunneling

A classical particle with the energy E, lower than the
maximum of potential energy, would be fully re�ected
from the classical turning point a. Due to the under-
barrier penetration the quantum particle can reach the
second turning point b and then propagate to the right
(Fig. 5).
Our purpose is to �nd the tunneling amplitude t. In the
semiclassical approximation the wave function must be

 (x) ' t
p
p
exp

0@ i

~

xZ
b

pdx

1A (H1)

at x > b since right to the turning point b there is no wave
propagating to the left. This wave function grows expo-
nentially under the barrier, left to the turning point b;
and it is expressed by the same equation (H1) under the
barrier at a < x < b. But the same wave-function expo-
nentially decreases under the barrier right to the turning
point a. According to the general rule of passing the
turning point (equation E4), the wave-function in the
classically allowed region x < a reads:

 (x) ' t
p
p

0@e x
i
~
R
a

pdx

� ie
x

� i
~
R

a

pdx

1A � e� i
~

bR
a

pdx
(H2)

The statement of the problem about tunneling requires
that the amplitude of the incident wave to be equal to 1.
It means that

t = exp

0@ i

~

bZ
a

pdx

1A = exp

0@�1
~

bZ
a

j p(x) j dx

1A

V(x)

x
a b c

FIG. 6 Decay of a metastable state.

The probability of tunneling is:

P =j t j2= exp

0@�2
~

bZ
a

j p(x) j dx

1A (H3)

I. Decay of a metastable state

Let us consider a potential schematically depicted in
Fig. 6:
A classical particle with the energy E between Vmin and
Vmaxis con�ned on a trajectory limited by turning points
a and b. Quantum mechanics allows the particle to tunnel
and escape when it reaches point b. The probability of
this process is:

P = exp

0@�2
~

cZ
b

j p(x) j dx

1A (I1)

as it was established in previous subsection. Let particle
was placed between a and b at an initial moment of time
t = 0. The probability to �nd it in the potential well
after time t much longer than the period of oscillations
T is:

w(t) = (1� P )t=T (I2)

At small enough P the probability (I2) can be rewritten
as:

w(t) = e�tP=T = e�2t=� (I3)

where we have introduced the life-time � of the particle
on the level E:
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� = 2T (E)=P = 2T exp

0@2
~

cZ
b

j p(x) j dx

1A (I4)

Note, that the state of a particle in such a potential
well is not stationary, it decays with time, but it can
be considered as being quasistationary one. It means
that the particle makes a large number �=T oscillations
before it leaves. The modulus of the wave-function is de-
creasing exponentially as e�t=� . The wave-function has
also the standard phase factor exp (�iEt=~). In total

the wave-function changes in time as exp
�
� i(En�i)t

~

�
,

where  = ~=� . Thus, the metastable state can be al-
ternatively described as a state with a complex energy
E = En � i. The wave-function of the metastable state
can be expanded into Fourier-integral:

 (t) =

Z s
 (E)e�iEt=~dE (I5)

The square of modulus j
s
 (E) j2can be interpreted as the

probability density to �nd our system with the energy E.
A simple calculation shows that

j
s
 (E) j= const

(E � En)2 + 2
(I6)

This is the so-called Lorenz distribution or the Lorenzian.
It has a shape of a peak of the width  centered at E =
En. Thus, the metastable state has uncertainty of energy
�E or the width of the level equal to . On the other
hand, its life-time � can be considered as the uncertainty
of time�t. From the relation  = ~=� we �nd the energy-
time uncertainty relation:

�E ��t � ~ (I7)

G. Gamov (1928) was the �rst to treat the �-decay of
radioactive nuclei as the quantum tunnelling.

J. The resonance tunnelling and the Ramsauer e¤ect

Consider a one-dimensional potential well separated
by two barriers from zero level at x ! �1 (Fig. 7).
At a proper condition, this potential has metastable lev-
els. We will prove that the transmission of the particle
through the potential has very sharp maxima at values
of energy equal to the energies of metastable levels.
Let a; b; c and d are the turning points taken from the
left to the right at some positive value of energy E. We
will employ the fact that the two independent solutions
of stationary Schrödinger equation can be always chosen
to be real, due to the time reversal symmetry. Let denote

a b c d

V(x)

x

FIG. 7 Resonance transmission.

these solutions  1(x) and  2(x). Without loss of general-
ity, we can choose them in such a way that, in classically
allowed region between the turning points b and c; their
semiclassical asymptotics are:

 1(x) t
2p
k(x)

cos

0@ xZ
b

k(x0)dx0 � �

4

1A ; (J1a)

 2(x) t
2p
k(x)

cos

0@ xZ
c

k(x0)dx0 +
�

4

1A (J1b)

Since the energy E is arbitrary and does not obey the
Bohr�s quantization rule, the two asymptotics given by
eq. (J1a) represent di¤erent functions. According to the
general rule of passing turning points, the �rst solution
becomes exponentially small in the classically forbidden
region between a and b, whereas the second one is expo-
nentially small between c and d:

 1(x) =
1p
jk(x)j

e

xR
b

jk(x0)jdx0
(a < x < b); (J2a)

 2(x) =
1p
jk(x)j

e
�

xR
c

jk(x0)jdx0
(c < x < d):(J2b)

The �rst solution will be, generally speaking, exponen-
tially large in the classically forbidden region between c
and d, whereas the second solution is exponentially large
between a and b. We must be very careful calculating
these asymptotics, since the large exponents must vanish
at values of energy corresponding to the Bohr quantiza-
tion rule and by continuity they are small in close vicinity
of the metastable levels. To catch this e¤ect we present
the asymptotics of  1(x) in the following form:
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 1(x) =
2p
k(x)

sin

0@ xZ
c

k(x0)dx0 � �

4
+ �

1A ; (J3)

where � =
cR
b

k(x)dx. It must be a linear combination

of two solutions formally represented by sine and cosine

of the argument
xR
c

k(x0)dx0 + �=4. The �rst of them de-

creases in the classically forbidden region c < x < d,
whereas the second one increases. Thus, the solution  1
in the forbidden region c < x < d reads:

 1(x) =
1p
jk(x)j

"
sin� e

�
xR
c

jk(x0)dx0
+ cos� e

xR
c

jk(x0)dx0
#

(J4)
Continuing the same solution into the right classically
allowed region x > d, we �nd:

 1(x) =
2p
jk(x)j

24sin� ��1R sin

0@ xZ
d

k(x0)dx0 � �

4

1A
+cos� �R cos

0@ xZ
d

k(x0)dx0 � �

4

1A (J5)

where �R = exp

 
dR
c

jk(x)dx
!
. The same continuation

for the solution  2 is simpler, since in the interval c < x <
d it contains only one, decreasing exponent. Therefore,
in the interval x > d the asymptotic of  2 is:

 2(x) =
2p
jk(x)j

��1R sin

0@ xZ
d

k(x0)dx0 � �

4

1A (J6)

A linear combination of the solutions  1 and  2 which
represents a wave propagating to the right at x > d is:

 (x) =
tei�=4

2�R cos�
(
�
 1 +

�
i�2R cos�� sin�

�
 2
�

s te
i
xR
d

kdx0

(J7)

Here we introduced an arbitrary coe¢ cient t which occurs
further to be the transmission amplitude. Continuing our
solutions in an analogues way to the left allowed region
x < a, we �nd:

 1(x) =
2p
jk(x)j

��1L sin

�
xR
a

k(y)dy + �
4

�
 2(x) =

2p
jk(x)j

�
sin� ��1L sin

�
xR
a

k(y)dy + �
4

�
� cos� �L cos

�
xR
a

k(y)dy + �
4

�� (J8)

where �L = exp

 
bR
a

jkjdx
!
. Now we are in position to

construct the asymptotic of the wave function  (x) (1) at
x < a. Requiring the coe¢ cient at the wave propagating
to the right to be 1, we �nd the transmission amplitude:

t =
2i�L�R

(�L�R)2 cos�+ i(�2L + �
2
R) sin�

(J9)

Its square of modulus (the transmission coe¢ cient) is:

jtj2 = 4(�L�R)
2

(�L�R)4 cos2 �+ (�2L + �
2
R)
2 sin2 �

(J10)

Since �L;R are exponentially large values, the transmis-
sion coe¢ cient (J10) reaches its maximum at cos� = 0,
i.e. at energy satisfying the Bohr�s condition � = (n +
1=2)�. The maximum is equal to

jtj2max =
4(�L�R)

2

(�2L + �
2
R)
2
� 1

The value 1 is reached at �L = �R. The peak is very
sharp. The value jtj2 decreases twice at j�2 � �j t�
��2L + ��2R

�
. Thus, we demonstrated that the barrier

is selectively transparent for particles with energy close
to the metastable levels.
The phenomenon of selective transparency was found

experimenatally in optics and electron beams propaga-
tion. It is known as the Ramsauer e¤ect. It also known
as the resonant tunneling. It plays an important role
in semiconductor physics, especially in the devices called
single-electron transistors.

K. The overbarrier re�ection.

To �nd a small re�ection coe¢ cient for a particle with
energy higher than the maximum potential energy, one
can apply similar ideas passing the turning points x0 in
the complex plane of the coordinate x. There is no turn-
ing point on the real axis, but a general theorem of com-
plex variables theory guarantees that an analytical func-
tion accepts any value in the complex plane. In partic-
ular, V (x) = E at some point x0 of the complex plane.
We consider a simple situation when there is only one
such a point. The asymptotics of a proper wave function
are:

 (x) =

�
eik�x + re�ik�x x! �1
teik+x x! +1 (K1)

where k� are limiting values of k(x) =
p
2m(E � V (x) at

x! �1, r is the re�ection amplitude, t is the transmis-
sion amplitude. Starting from the real axis x at x! +1
it is possible to continue the solution into the complex
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x0

(x0)*

Re x

I
I

Im x

FIG. 8 Stokes lines at over-barrier re�ection.

plane of x and arrive at the line 1 Im
xR
x0

k(x0)dx0 = 0

which is parallel to the real axis at Rex!1 (Fig. 8).

This is possible since the potential is constant with any
desirable precision at Rex ! 1 . The asymptotic solu-
tion (1) on the line 1 can be written as follows:

 (x) = teik+x t
tk+p
k(x)

exp

0@i xZ
x0

k(x0)dx0

1A � (K2)
� exp

0@ik+x0 � i 1Z
x0

(k(x0)� k+)dx0
1A

The solution in this form can be continued along the line
1 till the vicinity of the turning point. According to the
general rule (E4), the asymptotic of the same solution on
line 2 is

 (x) =
tk+p
k(x)

exp

0@ik+x0 � i 1Z
x0

(k(x0)� k+)dx0
1A �(K3)

�

24exp
0@i xZ

x0

k(x0)dx0

1A� i exp
0@�i xZ

x0

k(x0)dx0

1A35
Passing along the line 2, we arrive at Rex ! �1 and
then descend to the real axis employing the fact that the
potential is constant with any desirable precision. At
x! �1 the argument of exponents can be evaluated as
follows:

xZ
x0

k(x0)dx = k�(x� x0) +
xZ
x0

(k(x0)� k�) dx0 (K4)

� k�x�
x0Z
�1

(k(x0)� k�) dx0 � k�x0

Plugging (K4) into (K3) and comparing this result to the
second line in (K1), we �nd:

t
k+
k�

e
i

"
(k+�k�)x0�

x0R
�1
(k(x0)�k�)dx0�

1R
x0

(k(x0)�k+)dx0
#
= 1

(K5)

�itk+
k�

e
i

"
(k++k�)x0+

x0R
�1
(k(x0)�k�)dx0�

1R
x0

(k(x0)�k+)dx0
#
= r

(K6)
Eliminating t from (K5) and (K6), we �nd:

r = i exp

242ik�x0 + 2i x0Z
�1

(k(x)� k�) dx

35 (K7)

The integration in the argument of the exponent in (K7)
can be performed along real axis x from �1 till Rex0
and parallel to the imaginary axis from this point till x0.
The part of argument

2ik�Rex0 + 2i

Re x0Z
�1

(k(x)� k�) dx

is purely imaginary. It contributes to the phase factor.
The remaining contribution is:

�2k� Imx0 � 2
Im x0Z
0

(k(Rex0 + iy)� k�) dy

= �2
Im x0Z
0

k(Rex0 + iy)dy

It has real and imaginary parts. Its imaginary part again
contributes to the phase factor only. Its real part deter-
mines the modulus of r:

j r j= exp

0@�2Im x0Z
0

Re k(Rex0 + iy)dy

1A (K8)
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FIG. 9 Wave functions in a double potential well.

The last equation can be simpli�ed taking in account that
k(x) is real on the real axis, and therefore k(x�) = k�(x)
for complex x. Thus:

�2
Im x0Z
0

Re k(x0+iy)dy =

Im x0

�
Z

� Im x0

k(Rex0+iy)dy = i

x0Z
x�0

k(x)dx

(K9)
and

j r j= exp

0B@ix0Z
x�0

k(x)dx

1CA (K10)

The re�ection amplitude is exponentially small and can
not be found in any power approximation over the small
parameter (�=L). This method of calculation was pro-
posed by Pokrovsky and Khalatnikov (1961).

L. Splitting of levels in a symmetric double well.

Let us consider energy levels in a symmetric double
potential well schematically depicted on Fig 9.
For energies E between the double degenerate absolute
minimum of the potential Vmin and its maximum, Vmax,
the energy levels are double degenerate if the tunnelling
between the wells is neglected. This degeneration is lifted
by the tunnelling. To �nd the splitting of the levels we
start with Schrödinger equations for symmetric and anti-
symmetric wave functions  s,  a with close energies Es
and Ea:

~2

2m

d2 s
dx2

+ (Es � V (x)) s = 0 (L1)

~2

2m

d2 a
dx2

+ (Ea � V (x)) a = 0 (L2)

Let multiply equation (L1) by  a(x), equation (L2) by
 s(x) and subtract the second equation from the �rst.
The result reads:

~2

2m

d

dx

�
 a
d s
dx

�  s
d a
dx

�
+ (Es � Ea) s a = 0 (L3)

After integration of equation (L3) from x = 0 to in�nity,
we �nd:

Ea � Es =
~2

2m
�

 s(0)
d a(0)
dx

1R
0

 s(x) a(x)dx

(L4)

We have employed the fact that  a(0) =  a(1) =
 s(1) = 0. The asymptotics of the symmetric wave
function can be chosen as follows:

 s(x) =

8>>>>>>>><>>>>>>>>:

1p
jp(x)j

cosh

�
xR
0

jp(x0)jdx0=~
�

cosh

�
aR
0

jp(x0)jdx0=~
� j x j< a

2p
jp(x)j

cos

�
1
~

xR
a

p(x0)dx0 � �=4
�

a <j x j< b

1p
jp(x)j

exp

�
� 1
~

xR
b

j p(x0) j dx0
�

j x j> b

(L5)
The normalization of the function  s(x) is cho-
sen in such a way that it decreases as  s(x) t

1p
jp(x)j

exp

�
�
aR
x

j p(x0) j dx0
�
for x < a and j a� x j>>�

~2=mV 0(a)
�1=3

. For the antisymmetric wave-function
 a(x) the asymptotic reads:

 a(x) =

8>>>>>>>><>>>>>>>>:

1p
jp(x)j

sinh

�
xR
0

jp(x0)jdx0=~
�

sinh

�
aR
0

jp(x0)jdx0=~
� j x j< a

� 2p
jp(x)j

cos

�
1
~

xR
a

p(x0)dx0 � �=4
�

a <j x j< b

� 1p
jp(x)j

exp

�
� 1
~

xR
b

j p(x0) j dx0
�

j x j> b

(L6)
With the accepted precision the asymptotics di¤er only
in the region j x j< a for positive x. From (L5) and (L6)
the product  s(0)

d a(0)
dx occurring in equation (L4) can

be easily found:

 s(0)
d a(0)

dx
=

1

~
�
sinh

�
2

aR
0

j p(x0) j dx0=~
�� (L7)



12

Let calculate the integral:

1Z
0

 s(x) a(x)dx t
bZ
a

 s(x) a(x)dx t

t 4

bZ
a

cos2

24 xZ
0

p(x0)dx0=~� �=4

35 dx

p(x)

Substituting quickly oscillating cos2 by its average value
1/2, we arrive at a following result:

1Z
0

 s(x) a(x)dx t
b

2

Z
a

dx

p(x)
=
1

m
T (E) (L8)

where T (E) is the period of motion along the classical
trajectory. Plugging (L7) and (L8) into equation (L4),
we obtain:

Ea � Es =
~

T (E)

�
sinh

�
2

aR
0

j p(x0) j dx0=~
�� t(L9)

t
~!
�
exp

0@� aZ
�a

j p(x0) j dx0=~

1A
where ! is the classical frequency of motion ( ~! is the
distance between levels in each well). Again we obtain
exponentially small value, speci�c for a classically forbid-
den e¤ect. Note that the antisymmetric state has always
higher energy than the symmetric one.

M. Semiclassical approximation for the radial wave
equation

The radial SE for spherically symmetric potential
reads:

1

r2
d

dr

�
r2
d 

dr

�
+

�
k2 � v(r)� l(l + 1)

r2

�
 = 0 (M1)

where as usual k2 = 2mE=}2 and v(r) = 2mV (r)=}2.
The last term is proportional to centrifugal potential;
the integer l is the dimensionless total orbital momen-
tum. We assume l� 1. To trasform this equation to the
standard one-dimensional form we introduce a new func-
tion �(r) = r (r). The wave equation for the function �
reads:

d2�

dr2
+

�
k2 � v(r)� l(l + 1)

r2

�
� = 0 (M2)

General condition of semiclassical approximation also re-
quires that

dk(r)

dr
� k2(r); k(r) =

r
k2 � v(r)� (l + 1=2)

2

r2
(M3)

Note that the centrifugal term in expression (M3) for k(r)
di¤ers from that in equation (M2) by a comparatively
small term 1=4r2. We will show later that this choice al-
lows to obtain an interpolation formula which works well
at large and small values of r. Indeed, if the potential
varies slowly enough and r � k=l, the requirement (M3)
is satis�ed. At r � k=l the centrifugal term dominates.
Then k(r) becomes purely imaginary k(r) t �i(l+1=)=r.
The wave function � decreasing in the classically forbid-
den area r < r0 reads:

�(r) =
ei�=4p
k(r)

exp

0@i rZ
r0

k(r0)dr0

1A (M4)

where r0 is the classical turning point. For r � l + 1=2
the approximate estmate is

�(r) t
r

r

l + 1=2
exp

�
(l + 1=2) ln

r

l + 1=2

�
=

�
r

l + 1=2

�l+1
For the initial radial wave function in the same region we
�nd an asymptotic:

 (r) t
rl

(l + 1=2)l+1

which agrees with the general analysis. Then in classi-
cally allowed region r > r0 the semiclassical approxima-
tion reads:

�(r) =
2p
k(r)

sin

0@ rZ
r0

k(r0)dr0 +
�

4

1A (M5)

Problems:
1. Find asymptotics of spherical Bessel functions jl(x)

at large values of l.
2. The same problem for standard Bessel functions.
3. Find the roots xn;m of Bessel functions Jm(x) with

large m or with large n or both.

III. SEMICLASSICAL APPROXIMATION IN 3
DIMENSIONS

A. Hamilton-Jacobi equation

Solving Schrödinger equation in 3 dimensions for the
case when j r� j= (� jrV j =K) << 1, we apply the same
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FIG. 10 Family of classical trajectories.

trick representing  as  = eiS=~. Equation for S(r;E)
reads:

1

2m
(rS)2 + V (r)� i~

2m
�S = E (A1)

Again we expand formally S into a power series over ~:

S = S0 + ~S1 + ~2S2 + ::: (A2)

Then in the leading approximation we �nd equation for
S0:

1

2m
(rS0)2 + V (r) =E (A3)

This equation is well-known in classical mechanics as the
stationary Hamilton-Jacobi equation. It can be consid-
ered as one of possible formulations of classical mechan-
ics, equivalent to other important formulations: New-
ton laws, Hamilton canonical equations and Lagrange-
Hamilton variational principle. As it is seen from equa-
tion (3), the value 1

2m (rS0)
2 is the kinetic energy of a

particle. Therefore, the absolute value of rS0 is equal
to the absolute value of momentum at the point r for a
particle with the total energy E. To understand what
is the physical meaning of the function S0(r) consider a
family of trajectories for particles with �xed energy pass-
ing through a point r0 of a surface � with the direction
of velocity n0= v0=jv0j normal to the surface (see Fig.
10). The modulus of the velocity for each starting point
r0 is uniquely de�ned as p(r0)=m.

One can imagine the surface � as a set of points r0 passed
by a beam of particles at some initial moment of time t0.
These conditions determine a family of trajectories r(t) =

r(t; r0; E) unambiguously. The classical action along this
trajectories is:

S(r;E) =

rZ
r0

p(r
0
)dr0 (A4)

At a �xed surface � the point r0 is determined by the
point r 3 . Therefore, S(r;E) is a function of r only. Its
gradient is equal to the momentum of a particle on a
trajectory starting on � in the point r0 with the velocity
perpendicular to �. The surface S(r;E) =const is normal
to the family of trajectories intersecting this surface. In
optics the surface perpendicular to the light rays is called
the wave front. A close analogy between the Hamilton-
Jacobi formulation of classical mechanics and the di¤rac-
tion theory of optical waves inspired W.R. Hamilton to
develop his particle-wave analogy which anticipated the
Quantum Mechanics more than half a century prior its
creation.
Equation (A4) shows how to construct a general solu-

tion of the Hamilton-Jacobi equation4 . One should �x a
surface � in 3d space (or a line in 2d space) and �nd the
unit vector of normal n0(r0) at each point of this sur-
face, then calculate classical trajectories passing through
� with the direction of velocity n0(r0), �nd a trajectory
passing through the point r and integrate momentum
along this trajectory. It is clear that the general solution
S(r;E) depends on the choice of initial surface �, which
is completely determined by an arbitrary function of 3
(or 2) variables. On the other hand, any particular so-
lution of Hamilton-Jacobi equation (A3) corresponds to
a family of classical trajectories which can be found as
solution of ordinary di¤erential equation:

�
r(t) =

1

m
rS(r) (A5)

As an example, consider free particles (V (r) =0). A sim-
plest solution of equation (3) in this case is

rS0 = p = const; S0 = p � r (A6)

It corresponds to a family of straight-lined trajectories
parallel to the constant vector p. The initial surface � is
the plane perpendicular to p. The wave-function corre-
sponding to this solution is the plane-wave  (r) =eip�r=~.
This result seems quite natural. A spherically symmetric

3 Actually, it can happen that several trajectories starting at di¤er-
ent r0 pass through the same point r. We consider this situation
later.

4 The method described here is well known in theory of di¤erential
equations with partial derivatives as �Method of characteristics�
.
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solution of Hamiltonian-Jacobi equation for a free parti-
cle is:

S = p � r (A7)

where p is a constant and r is the spherical radius. Its

gradient rS = p
^
r is directed along the radius and its

modulus is constant. The initial surface � is a sphere. In
classical mechanics this solution corresponds to a beam
of particles moving from the origin with a permanent
velocity. In quantum mechanics it is an outgoing spher-

ical wave  (r) =
exp( ipr~ )

r . The origin of the factor r in
denominator is explained in the next subsection. The
reader can construct cylindrical wave in a similar way.
Note that trajectories in both cases have no intersections.

B. The caustics and tubes of trajectories

A less trivial situation arises when trajectories inter-
sect. As an example consider trajectories of free particles
in 2 dimensions starting from a parabola y = kx2 in the
direction normal to the parabola in the starting point
(Fig. ??) .
If the coordinates of starting point are y0 = kx20 and x0
, equation of the trajectory is:

y � kx20 = �
1

2kx0
(x� x0) (B1)

Equation (B1) can be considered as equation for x0 at
�xed x and y. It has only one root for any point between
the initial parabola y = kx2 and a curve

x = �2(2ky � 1)
3=2

3
p
6k

(B2)

For any point (x; y) inside the latter curve (�semicubic
parabola�) there exist three trajectories passing through
it (try to prove this statement). The curve (B2) is the
envelope of classical trajectories, the so-called caustic.
Even visually it is seen as a line where classic trajecto-
ries become dense. Therefore, one can expect that the
stationary density increases near caustics. This anticipa-
tion will be supported by the direct calculation later.
As a second example let us consider particles in 2 di-

mensions subjected to an external potential V (x) de-
pending on coordinate x only. The family of trajectories
is characterized by the total energy and the angle � which
they form with the x-axis at x! �1 where V (x) can be
neglected. The components of momentum in this asymp-
totic region are px =

p
2mE cos � and py =

p
2mE sin �.

The value py is conserved. Therefore

p2x = 2mE � p2y � 2mV (x) = 2m(E cos2 �� V (x)) (B3)

FIG. 11 Trajectories of particles and caustics in a parabolic
billiard.

V(x)=Ecos2θ

x

FIG. 12 Caustics for a 2d particles in 1d potential.

It becomes zero at V (x) = E cos2 � < E . This is again
the envelope of classical trajectories for this case, i.e. the
caustic (Fig. 12).
Note,that the energy remains larger than the potential
energy, but the region behind the caustic V (x) > E cos2 �
is classically forbidden. Thus, the caustics can be also
considered as boundaries of classically allowed regions.
The classically forbidden region behind a caustic is the
shadow region in optics and common life.
Now we proceed to construction of the next after the

leading semiclassical approximation. Returning to equa-
tion (A1), we retain in it terms proportional to ~. The
result reads:

2rS0rS1 = i�S0 (B4)
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A1

A2

FIG. 13 Tube of trajectories.

Remembering that rS0 = p, equation (B4) can be
rewritten as follows:

(pr)S1 =
i

2
r � p (B5)

Let us introduce a coordinate along a classical trajectory.
As the most natural choice for the coordinate along the
trajectory we accept its length l from some initial point to
the current point. Then equation (B5) can be rewritten
in an equivalent form:

dS1
dl

=
i

2p
r � p (B6)

To solve it explicitly, we need to elucidate the geomet-
rical meaning ofr�p. Consider a tube limited by a family
of trajectories and cut it by two close cross-sections 1 and
2, normal to trajectories (Fig. 13).
The �ux of the vector p through a surface composed by
these cross-sections and the tube of trajectories connect-
ing them is equal to p1A1 � p2A2 where p1;2 are values
of the momentum at the cross-sections 1 and 2 and A1;2
are the cross-section areas. Since p is directed along tra-
jectories, there is no �ux through the side part of the
surface. The volume limited by our surface is approxi-
mately equal to A ��l where �l is the distance along the
trajectories between the cross-sections. Therefore:

r � p = lim
�l!0

p1A1 � p2A2
A�l

=
1

A

d(pA)

dl
(B7)

Substituting (B7) into (B6) and integrating both parts
by l, we �nd:

S1 =
i

2
(ln pA� lnC) (B8)

where C is a constant. To make S1 �nite, this constant
must be proportional to a cross-section area A0 at some
point. Then equation (B8) acquires a �nite limit when
the tube of trajectories becomes in�nitely thin: the ratio
of cross-sections at di¤erent points of trajectory is �nite.
Plugging S0and S1 into the wave function  = eiS=~, we
�nd:

 (x) =
Cp
pA

exp

0@ i

~

xZ
x0

pdx

1A (B9)

where the integration proceeds along a classical trajec-
tory. The pre-exponential factor ensures that the �ux
of particles through the cross-section of a narrow tube of
trajectories does not change from one cross-section to an-
other, i.e. that the number of particles or their probabil-
ity is conserved. In particular, for spherical way A � r2

leading to the factor r in denominator.
Since a narrow tube of trajectories merges into a point

on a caustic, equation of the caustic can be formulated as
A = 0. Equation (B9) shows that the semiclassical wave-
function has a singularity near caustics and the density
grows as 1=A. Actually, equation (B9) is invalid in a
small vicinity of the caustic. In terms of a coordinate
� perpendicular to the caustic and equal to zero exactly
on it, the validity of semiclassical approximation (B9) re-
quires that j�j >> ~2=3=(m j rV j)1=3, similar to what
was found in 1d case. Close inspection reveals the rule
of passing through the caustic also similar to that we
found for passing the turning point in 1d . In particular,
the wave-function decreases exponentially in classically
forbidden region (shadow region). If several classical tra-
jectories pass through the point x, as it has happened in
above considered examples, equation (B9) must be gen-
eralized:

 (x) =
X
j

Cjp
pjAj

exp

�
i

~
Sj(x)

�
(B10)

where j enumerates the trajectories.

C. Bohr�s quantization in 3 dimensions. Deterministic
chaos in classical and quantum mechanics

Generalization of the Bohr�s quantization rule (1.F4�)
is obvious:

S(E) =

I
pdx = (n+)~ (C1)

where integral is taken along a closed trajectory and  is a
constant of the order of one. The necessary conditions for
such a quantization is the existence of classical periodic
trajectory.
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How restrictive is this limitation? This problem is very
important for classical mechanics. There exist few excep-
tional systems which allow the exact solution of the New-
ton or Hamilton equations due to their high symmetry.
One of the most important is the Kepler (or Coulomb)
problem. In this case the periodic solutions are found ex-
plicitly. But how do they relate to reality? Real systems
always are subject to perturbations which destroy the
symmetry. For example, the Earth rotates in the grav-
itational �eld of the Sun, just the Kepler problem. But
it is also e¤ected by the moon and other planets. Can
it happen that in the course of time these perturbations
are accumulated and destroy the Keplerian periodicity?
The answer to this question was given by French

matematician A. Poincare and later by A. Kolmogorov,
V. Arnold and A. Mozer. They have found that a weak
periodic perturbation does not destroy periodic trajec-
tory if the ratio of the perturbation frequency to the fre-
quency of motion on the trajectory is not close to a ratio-
nal number with su¢ ciently small nominator and denom-
inator, i.e. they are not in resonance. If, on contrary, the
perturbation frequency is close to a low-order resonance
or its amplitude is large, the initial classical trajectory
can be destroyed. It becomes aperiodic, though it can be
limited in space. In this situation two trajectories with
very close initial conditions diverge very far in the course
of time. It means, that the coordinates and momenta
become unpredictable. The motion becomes chaotic, de-
spite of the fact that equations of motion are completely
deterministic. This is the so-called deterministic chaos,
the main problem of the modern non-linear mechanics.
How the deterministic chaos displays itself in the quan-

tum mechanics? One can conjecture that the random-
ness of trajectories lead to the randomness of phase fac-
tors for wave-functions and transition amplitudes. Not
only phase factors, but the moduli of transition ampli-
tudes become random since the caustics also are chaotic.
Thus, in quantum mechanics the matrix of transition
amplitudes is random. The transition amplitudes are
matrix elements of the evolution operator U(t). Since
U(t) = exp (iHt=~), it also means that the Hamiltonian
H can be considered as a random matrix. Theory of ran-
dom matrices was created by E. Wigner and F. Dyson. It
shows that the distance � between nearest energy levels

is a random value. Its average
�
� is equal to inverse den-

sity of levels (@n=@E)�1, but its �uctuations are of the
same order of magnitude. The probability density to �nd
the inter-level distance � occurs an universal function of

the ratio �=
�
�. This function is now reliably established.

It plays the central role in so remote areas as spectra of
atomic nuclei, spectroscopy of highly excited (Rydberg)
atoms in external magnetic �eld and properties of disor-
dered conductors of small size (the so-called mesoscopic).
Among numerous books and reviews on classical and

quantum deterministic chaos I can recommend the book
by M. Gutzwiller (5).

IV. ADIABATIC APPROXIMATION

A. De�nition and main problems

This approximation is similar to the semiclassical one,
but it deals with time-dependent problems. It works if
coordinates of a system can be divided into two groups:
fast varying r and slowly varying R, where both r and R
are multicomponent variables. A popular example is the
molecular motion. Any molecule consists of heavy ions
and light electrons. According to the virial theorem, their
kinetic energy must be of the same order of magnitude,
i.e. Mv2i t mv2e , or ve =

p
M=mvi. Thus, the electron

velocity is typically
p
M=m s 103 times larger than the

ion velocity. It means that the quantum problem for
electrons can be solved in the leading approximation at
�xed positions Riof ions. The total Hamiltonian for a
molecule reads

H = Hei +Hi (A1)

where Hei(Ri) is the Hamiltonian for electrons at �xed
positions of ions and Hi is the part of the Hamiltonian
containing coordinates of ions only. To be speci�c, we
write:

Hei =
P
k

p2k
2m + e

2
P
k<l

1
jrk�rlj � e

2
P
k;i

Zi
jrk�Rij

Hi =
P
i

P 2
i

2Mi
+ e2

P
i<j

ZiZj
jRi�Rj j

(A2)

where capitals relate to ions, lower cases relate to elec-
trons. The adiabatic or Born-Oppenheimer approxima-
tion works well for a bound state of electronic system
j n;Ri obeying the Schrödinger equation:

Hei(Ri) j n;Rii =En(Ri) j n;Rii (A3)

Electrons follow adiabatically the motion of ions as long
as the transition frequency ! is large in comparison to a
characteristic frequency of ion motion 
 = L=vi, where L
is a characteristic size of the ionic motion. For molecules

 s

p
m=M! << !. The adiabatic parameter

p
m=M

is really small. It means that the ion motion does not
produce transitions between electronic levels. The e¤ec-
tive Hamiltonian for ions then can be intuitively found by
averaging of the Hamiltonian (1) over a �xed electronic
state j n;Rii. Thus, we �nd:

H
(i)
eff = Hi + En(Ri) (A4)

The electronic term En(Ri) plays the role of an addi-
tional potential energy for ions. Note that the complete
vector of state in this approximation is the direct prod-
uct of the ionic state jii and electronic state dependent
on the ionic coordinates as parameters j n;Rii.
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Another example is delivered by a particle with spin
1/2 moving slowly in varying in space magnetic �eld B.
Then the transition frequency is ! = g�BB=~ where
�B =

e~
2mc is the Bohr magneton, g is the gyromagnetic

ratio (2 for a free electron). The adiabaticity condition
reads:

v=L << ! (A5)

where v is the particle velocity. In this case the direc-
tion of spin follows adiabatically the local direction of
magnetic �eld being either parallel or antiparallel to it.
One more example is delivered by a quantum rotator

, i.e. a particle with large spin or total angular moment
J; placed into external electric or magnetic �elds. The
centre of the particle must be �xed. Classical rotator is
characterized by its two spherical coordinates � and '.
They play role of slow coordinates. The fast coordinates
determine quantum �uctuations of the rotator near the
classical position. We will return to this example in some
details later.
General formulation of the adiabatic approximation is

as follows. Let the Hamiltonian of a systemH(R) depend
on a set of parameters R which vary in time. Let j n;Ri
is a stationary state of this Hamiltonian at a �xed set R:

H(R) j n;Ri = En(R) j n;Ri (A3�)

The process is called adiabatic if

j
�
R j
j R j <<

En+1 � En
~

= ! (A4)

Since transitions are suppressed in the adiabatic process,
it is obvious that the system will follow the same state
j n;Ri as long as adiabaticity condition (4) is satis�ed.
Two main problems must be solved to complete the pic-
ture.
i) The adiabatic approximation de�nitely is invalid in
points where two or more levels cross, since transition
frequency ! turns into zero. Then the transition be-
tween levels become probable. The problem is to �nd
the transition amplitudes. This is the so-called Landau-
Zener problem. Points of levels crossing in the adiabatic
problem are similar to the classical turning points in the
semiclassical approximation.
ii) The electronic state j n;Ri persists if R vary very
slowly with time, but it does not exclude a time-
dependent phase factor ei(t) accompanying the adiabatic
change of parameters R. This phase is called the Berry�s
phase. It plays very important role in numerous inter-
ference phenomena. It also changes the e¤ective Hamil-
tonian for slow variables R.

1

12

2

|V|
t

FIG. 14 Two levels crossing. Dashed lines show levels in the
absence of interlevel matrix element. Solid lines show levels
in adiabatic approximation.

B. Transitions at avoided two-level crossing (Landau-Zener
problem)

Though sometimes more than two levels can cross si-
multaneously, two-levels crossing is the most common sit-
uation. At two-level crossing we can neglect all other lev-
els and consider two-level system. We start with the con-
sideration of the most general two-level system with the
time-independent Hamiltonian. Stationary Schrödinger
equations for such a system are:

�
E1a1 + V a2 = Ea1
V �a2 + E2a2 = Ea2

(B1)

where a1;2 are the amplitudes of the states, E1;2 are their
energies and V is the transition matrix element. Solution
of secular equation for the system (1) reads:

E� =
E1 + E2

2
�
r
(E1 � E2)2

4
+ j V j2 (B2)

If j E1 � E2 j>> V , the two solutions (2) are approxi-

mately E+ = E1 +
jV j2

E1�E2 , E� = E2 � jV j2
E1�E2 , very close

to initial levels E1, E2. In the opposite limiting case
j E1 � E2 j<< V , we �nd E� t E1+E2

2 � j V j. It means
that energy levels do not cross, they repulse each other
and the minimal distance between them is 2 j V j. This
phenomenon is called the Wigner-Teller level repulsion.
If E1 and E2 are driven by some parameter t, a schematic
picture of levels near the crossing looks like it is shown
on Fig. 14.At in�nitely slow variation the system follows
the static level which it occupied initially. It means that
the state 1 transits with the probability 1 to the state
2 and vice versa. Most naturally one can choose t to
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be real time. The time-dependent Schrödinger equations
must be solved. They are:

(
i~ �
a1 = E1(t)a1 + V a2

i~ �
a2 = E2(t)a2 + V

�a1
(B3)

By the change of variables:

a1;2 = exp

0@� i
~

tZ
t0

E1(t
0) + E2(t

0)

2
dt0

1As
a1;2 (B4)

the system (3) is reduced to a following one:

i
�
~a1 =

!(t)
2 ~a1 + v~a2

i
�
~a2 = �!(t)

2 ~a2 + v
�~a1

(B5)

where !(t) = (E1(t) � E2(t))=~ is the time-dependent
transition frequency and v = V=~. We are interested in a
vicinity of the levels crossing point only. Accepting t = 0
in this point, let expand the frequency up to a linear
term: !(t) =

:
!0t , where

�
!0is the time derivative of the

frequency at the crossing point. The time dependence of
v can be neglected. In this approximation the system (5)
can be rewritten as:

(
i
�
a1 =

�
!0t
2 a1 + va2

i
�
a2 = v�a1 �

�
!0t
2 a2

(B5�)

Here and further we omit tilde over a1;2:In terms of a

dimensionless variable � =
q

�
!0t equation (5�) reads:

� �
i dd� �

�
2

�
a1 = a2�

i dd� +
�
2

�
a2 = �a1

(B6)

These equations depend on one dimensionless parameter
 = vp

�
!0
= V

~
p

�
!0
which was �rst introduced by Landau

(without loss of generality v can be taken real, ascribing
its phase factor to a2). It is possible to eliminate the am-
plitude a2 from the system (6) and reduce it to a second
order di¤erential equation for a1:

�
i
d

d�
+
�

2

��
i
d

d�
� �

2

�
a1 =j  j2 a1 (B7)

or

d2a1
d�2

+

�
i

2
+
�2

4
+ j  j2

�
a1 = 0 (B8)

This is the so-called equation of parabolic cylinder. Its
two independent solutions are expressed in terms of the
con�uent hypergeometric functions, but our purpose can

be achieved without knowledge of these special functions.
We look for a solution which corresponds to the �lled
state 1 and empty state 2 at t ! �1, i.e. j a1 j= 1
and a2 = 0 at � ! �1. Neglecting j  j2 in equation
(8) at large j � j, we �nd two independent solutions of
equation (8): a(1)1 t e�i�

2=4, a(2)1 t ei�
2=4

� . Only the �rst
one corresponds to our initial condition at � ! �1, the
second one leads to a �nite a2 according to (6). To �nd
what happens with this solution at � ! +1, we apply
the same trick we have used already for passing the clas-
sical turning point: we pass the crossing point � = 0
along a big circle in the upper half-plane of the complex
plane � . To understand why the contour of circulation
must be chosen in the upper half-plane, let us consider
the asymptotic behavior of the solution a1 t e�i�

2=4.
This solution decreases exponentially on the Stokes line
arg � = 3�=4. Therefore, it de�nitely is represented by
the same exponent on the ray arg � = � and on a large
arc in the complex plane � until it crosses the second
Stokes ray arg � = �=4. After this line a second asymp-
totic solution must be added with the coe¢ cient �i, but
the coe¢ cient at the �rst one does not change till the
next Stokes line arg � = ��=4 and the second solution
vanishes on the real axis at � ! +1. Due to the ad-
ditional term j  j2 a1 in equation (7), the modulus of
the solution a1 is not more equal to 1 at � ! +1. In-
deed, representing a1 as a1 = eiS(�) in the spirit of the
semiclassical approximation, we �nd equation for S(�):

�
dS

d�

�2
� id

2S

d�2
=

�
�2

4
+
i

2
+ j  j2

�
(B9)

At large � we expand dS
d� in a series over

1
� . In the leading

approximation we �nd:

dS0
d�

= ��
2
; S0 = �

�2

4
(B10)

Next approximation reads:

2
dS0
d�

dS1
d�

=j  j2 ; S1 = � j  j2 ln � + const (B11)

If the constant in equation (11) is chosen to make S1
real at arg � = +�, then ImS1 = � j  j2 at arg � = 0.
Therefore,

j a1 j= e��jj
2

at � ! +1 (B12)

Pay attention to the fact that, if we formally perform a
circulation in the lower half-plane of � , we obtain an er-
roneous answer for asymptotic value a1 = e�jj

2

(j a1 j
can not be more than 1). This asymmetry stems from
the exponential growth of the solution e�i�

2=4along the
Stokes line arg � = �i3�=4. It acquires another exponent
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on the line arg � = �i�=2 which further grows exponen-
tially, while the initial exponent becomes uncontrollably
small. The result (12) was �rst obtained independently
by Landau and Zener in 1932.
Landau has added to this consideration a feature spe-

ci�c for electronic transitions at a collision of two atoms
or ions. In this case the adiabatic parameter is the dis-
tance R between colliding particles. Let the level cross-
ing takes place at some value R = R0. Then it happens
twice during the collision process provided the minimal
distance between the particles Rmin is less than R0. Let
the crossing proceeds at moments of time t1 and t2. If

the change of phase
t2R
t1

!(t)dt between the crossing is large,

the interference e¤ects are negligibly small at small aver-
aging over energy or other quantum numbers. Then not
the amplitudes, but the probabilities of di¤erent versions
of electronic transitions become additive. The transition
probability at one crossing is P = 1� j a1 j2. The transi-
tion probability at the collision Pcol is the sum of prob-
abilities that the transition happens at the �rst crossing
and does not happen at the second one and vice versa,
i.e.

Pcol = 2P (1� P ) = 2e�2�jj
2
�
1� e�2�jj

2
�

(B13)

An interesting problem of interference between two suc-
cessive transitions is not yet solved.

C. Berry�s phase, Berry�s connection

1. De�nition of the geometrical phase

Let us consider again a system with adiabatically vary-
ing parameters R(t) and with the Hamiltonian H(R):
Let En(R) and j n;Ri are the eigenvalues and corre-
sponding eigenstates of the Hamiltonian H(R). We will
look for a solution of the time-dependent Schrödinger
equation:

i~
@

@t
j �; ti = H(R(t)) j �; ti (C1)

considering
�
R(t) as small values: j

�
R(t)j
R << !n;n�1.

Then, as it was already argued, the interlevel transi-
tions are suppressed and time-dependent states presum-
ably follow stationary states j n;R(t)i corresponding to
instantaneous values of the parameters. Thus, a solution
of equation (C1) generically associated with j n;R(t)i
can be represented as

j n; ti = e�i'(t) j n;R(t)i (C2)

By such an ansatz we automatically provide a correct
normalization of the state j n; ti. Substituting (2) to (1),
we arrive at equation:

~
@'

@t
j n;R(t)i+i~ @

@t
j n;R(t)i =En(R(t)) j n;R(t)i

(C3)
What is lost in this approach is the admixture of other
eigenstates j n0;R(t)i (n0 6= n) generated by the deriva-
tive

@

@R
j n;Ri =

X
hj n0;Ri
n0

hn0;R j @
@R

j n;Ri

It determines the transition amplitudes, i.e. the Landau-
Zener problem. In this section we assume that the tra-
jectory R(t) passes su¢ ciently far from the level crossing
points and neglect the transitions. Note,that even if it
passes the crossing point, the Landau-Zener parameter

2 =
V 2

~2j �!j
'

�
R
2

j hn0;R j @@R j n;Ri j2

~2 j @!=@R jj
�
R j

s
�
R

goes to zero when

���� �R���� goes to zero. Thus, the transi-
tion amplitudes are zero in adiabatic limit, whereas the
Berry�s phases are �nite. Let multiply equation (C3) by
hn;R(t) j to �nd:

@'

@t
=
1

~
En(R(t))� ihn;R(t) j (

@

@t
j n;R(t)i) (C4)

We prove that the second term in the r.-h.s. of equation
(C4) is real. Indeed, from the normalization condition
hn;R(t) j n;R(t)i = 1 it follows that

hn;R(t)( @
@t
j n;R(t)i) + ( @

@t
hn;R(t) j) j n;R(t)i = 0

On the other hand, according to general relations:

(
@

@t
hn;R(t) j)jn;R(t)i = hn;R(t) j ( @

@t
jn;R(t)i�

Thus, the matrix element hn;R(t) j ( @@t jn;R(t)i) is a
number equal to its complex conjugated taken with the
sign minus and, therefore, it is purely imaginary. Return-
ing to equation (C4), let integrate it:

'(t) =
1

~

tZ
t0

En(R(t
0))dt+ (t; t0) (C5)

where

(t; t0) = �
t

i

Z
t0

hn;R(t0) j @
@t0
jn;R(t0)idt0 (C6)
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The �rst part of the phase '(t) is what we could expect
from the naive arguments similar to those used for ex-
planation of the semiclassical limit. But the second part
(t; t0) is not trivial. It is called the Berry�s phase in
honor of the author, Michael Berry, who has discovered
it in 1983. This is an example of a simple phenomenon
which was overlooked by numerous researchers during al-
most 50 years after discovery of Quantum Mechanics.
We will simplify equation (6). First, let us note that

hn;R(t) j @
@t
n;R(t)i = dR

dt
� hn;R(t) j @

@R
j n;R(t0)i

Thus, equation (6) can be rewritten as follows:

(t; t0) =

tZ
t0

A(R(t))
dR

dt
� dt (C7)

where we have introduced the so-called Berry�s connec-
tion:

A(R) = �ihn;R j @

@R
j n;Ri (C8)

Since dR
dt � dt = dR, the integral in (C6) can be trans-

formed into a linear integral along a trajectory R(t):

(t; t0) = (R;R0) =

RZ
R0

A(R
0
(t))dR0 (C9)

The last equation demonstrates that the Berry�s phase
is a geometrical phase in the meaning that it depends
on the shape of trajectory and its endpoints, but it does
not depend on the dynamics on the trajectory. Any time
dependenceR(t) at passing a �xed curve inR-space leads
to the same Berry�s phase. Therefore, the Berry�s phase
is also called the geometrical phase.
An important peculiarity of the Berry�s phase C9 is

that the Planck constant is dropped out of it. It means
that the Berry�s phase is a purely classical e¤ect. Its
physical meaning can be easily explained for a simple
example of the Foucault pendulum. It is well known
that its oscillation is followed by a slow rotation of the
oscillation plane due to the Coriolis force induced by the
Earth rotation around its axis. The Berry�s phase is the
phase of this rotation for this speci�c problem.
More generally, the classical adiabatic motion is a fast

oscillation with slowly varying parameters. The fre-
quency of this motion is a given function of time, but its
phase and amplitude also vary slowly (see section II.G).

2. Gauge transformations

The geometrical phase (R;R0) is not de�ned uniquely
even if the contour of integration is �xed together with

R0

R

FIG. 15 Trajectory of a system in R-space.

its ends. Multiplication of the ket j n;Ri by a phase fac-
tor e�if(R) depending on R and the simultaneous gauge
transformation of the Berry�s connection:

A(R)! A(R) +rRf(R) (C10)

does not change the time dependence of the state j n; ti.
The gauge transformation of the Berry�s phase reads:

(R;R)! (R;R0) + f(R)� f(R0) (C11)

The gauge transformation of the Berry�s connection (10)
is similar to the gauge transformation of the vector-
potential in electricity and magnetism theory. It is
not surprising since both �elds belong to the class of
the Yang-Mills gauge �elds compensating the local U(1)
transformation5 . An essential di¤erence between them
is that the electromagnetic vector-potential depends on
real coordinates r, whereas the Berry�s connection de-
pends on parameters R which can be identi�ed with
slow variables. Thus, the Hamiltonian for slow vari-
ables must include A(R) in a gauge-invariant combi-
nation rR = 1

i @=@R�A which is proportional to the

quantum operator of velocity
�
R. Indeed, according to

the adiabatic assumption, a state of the complete system
jS; F i including fast and slow variables is a direct prod-
uct of the type: jS; F i = jSi 
 jn;Ri in which the �rst
ket determines the state of slow subsystem and the sec-
ond ket is the state of the fast subsystem parametrically

5 In terms of topological �ber-bundles theory the gauge potential
realises connection (parallell translation) between U(1) layers be-
longing to di¤erent points of the base (the manifold of points la-
beled by R). It justi�es the notation �Berry�s connection�, but
may be �Berry�vector-potential�would be not worse.
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dependent on slow coordinates. Applying the translation
generator �i @=@R to this state and multiplying the re-
sulting state by the bra hRj 
 hn;Rj where hRj is the
vector of a state with a �xed coordinate, we arrive at the
gauge invariant derivative:

1

i

@ (R)

@R
�i (R)� hn;Rj @

@R
j n;Ri = (1

i

@

@R
�A(R)) (R)

Here  (R) = hR jSi is the Schrödinger wave-function for
slow coordinates.

3. Invariant Berry�s phase

Though generally the Berry�s phase is not invariant
under the gauge transformation, it becomes invariant for
any closed contour C. In this case the gauge phases f(R)
and f(R0) coincide and cancel each other (see equation
(C11). Thus, for a closed contour the geometrical phase
depends only on the contour:  = (C). Here we �nd
this dependence in some important cases.
We start with the case of a particle with spin 1/2 mov-

ing in an inhomogeneous magnetic �eld. The spin Hamil-
tonian for such a system is:

HB(B) =g�Bs �B (C12)

and B is an arbitrary slow function of time t. Slow here

means that j
�
B j =B � g�BB=~. The vector B plays the

role of slow parameters which was denoted in previous
sections R. The spin adiabatically follows the direction
of magnetic �eld B: The instantaneous stationary states

are spinors j �;
^

Bi obeying equations:

^

B � s j �;
^

Bi = �1
2
j �;

^

Bi (C13)

(
^

B is unit vector along magnetic �eld B). Let us ex-
pand them in a �xed base j �1=2; zi of states with spin
projections �1=2 onto a �xed axis z:

j �;
^

Bi = ��(
^

B) j+; zi+ ��(
^

B) j�; zi (C14)

Substituting (3) into (2) and solving corresponding equa-
tions, we �nd: �+ = cos �=2; �+ = sin �=2 e�i';
�� = sin �=2 e

i'; �� = cos �=2 where � and ' are spheri-

cal angles determining the direction of
^

B. It is convenient
to express �� and � � directly in terms of Cartesian com-
ponents of the vector B:

�+ =

r
B +Bz
2B

; �+ =

r
B �Bz
2B

Bx � iByq
B2x +B

2
y

(C15)

�� =

r
B �Bz
2B

Bx + iByq
B2x +B

2
y

; �� =

r
B +Bz
2B

where B =
q
B2x +B

2
y +B

2
z is the modulus of the vector

B. Now the di¤erentiation of the amplitudes (15) by Bj
(j = x; y; z) is straightforward and, according to the gen-
eral prescription, components of the Berry�s connection
are:

A
(�)
j = �i h�;Bj @

@Bj
j�;Bi (C16)

We leave this calculation as an exercise for a reader. The
result for state " + " is:

A(+)z = 0; A(+)x = �1� cos �
2 sin �

sin'

B
; A(�)y =

1� cos �
2 sin �

sin'

B
(C17)

Transformation of the Berry�s connection vector to spher-
ical components simpli�es it remarkably:

Ar = A� = 0; A' =
1

2B

1� cos �
sin �

(C18)

Pay attention that the vector A has a singularity on the
line � = �. If we consider B as the radius-vector in
B-space, the Berry�s connection (7) coincides formally
with the vector-potential of the Diracs monopole with
the magnetic charge 1/2. It is useful to introduce the
representing �eld B = r�A. Do not confuse it with the
real magnetic �eld B. Its calculation from equation (7)
is straightforward:

B = 1

2

B

B3
(C19)

The calculation of the invariant Berry�s phase can be
performed explicitly using the Stokes theorem:

(C) =

I
C

AdB =

Z
�(C)

BdSB =

(C)

2
(C20)

Here �(C) is any surface in the B-space subtended by
the contour C and 
(C) is the solid angle at which this
surface is seen from the origin. This answer has a di-
rect experimental consequence determining the quantum
interference of two spin-1/2-particle sub-beams, one of
which passes a region of varying in space magnetic �eld.
The extremely simple geometrical phase (C20) has a

more general meaning. It relates to an adiabatic quan-
tum system if all points of the contour C are close to a



22

two-level crossing points. Near this point the time deriv-
atives of all states j n;Ri, except of the two which cross,
can be neglected. The problem is e¤ectively reduced to
the 2-level problem which in turn is reduced to that of
spin-1/2 in an external �eld.
The above described problem allows generalization to

higher spins S > 1=2. In analogy with the states j �
^

Bi

determined by equation (C14), we introduce j m;
^

Bi the

eigenstates of the operator S�
^

B:

S�
^

B j m;
^

Bi = m j m;
^

Bi; m = �S;�S + 1:::S (C20)

They can be obtained from the state j m; ^zi applying to
it �rst the rotation Rx(�) by the angle � around the x-
axis and then the rotation Rz(') around the z (namely

these two rotations transform the unit vector
^
z into the

unit vector
^

B, see Fig. ):

j m;
^

Bi = Rz(')Rx(�)R
�1
z (') j m; ^zi (C21)

The operator R�1z (') does not change the state j m; ^zi,
it simply multiplies it by the factor eim', but it ensures

that the state j m;
^

Bi coincides with j m; ^zi at � = 0.
The rotation operators are:

Rz(') = e�iSz'; Rx(�) = e�iSx�

Substituting them into (11) and di¤erentiating, we �nd:

A� = � i

B
�

hm; ^zjeiSx�eiSz' @
@�

�
e�iSz'e�iSx�

�
jm; ^zi

= � 1
B
hm; ^z j Sx j m;

^
zi = 0

A' = � i

B sin �
� (C22)

hm; ^zjeiSz'eiSx�eiSz' @
@�

�
e�iSz'e�iSx�eiSz'

�
jm; ^zi

= � 1

B sin �
hm; ^z j eiSx�Sze�iSx� �m j m; ^zi

=
m(1� cos �)
B sin �

This answer di¤ers from that of equation (C20) only by
substitution of m instead 1/2. Therefore, for the state
with a �xed projection of spin m the Berry�s phase reads

(C;m) = m
(C) (C23)

An experimental veri�cation of equation (C20) has been
performed by T. Bitter and D. Dublers (Phys. Rev. Lett.

B

C

FIG. 16 Closed contour formed by rotating magnetic �eld.

59, 251, 1987). They have used a neutron beam in the
magnetic �eld slowly rotating in space around the direc-
tion of the beam propagation. Neutrons were polarized
perpendicularly to the �eld and remained perpendicu-
larly polarized due to the adiabaticity along their tra-
jectory. We know that in the homogeneous �eld spin
precesses with the angular velocity ! = g�B

~ and turns
over the angle �0(t) = !t. But in the rotating �eld the
Berry�s phase must be added:

� = �0(t) + 2(C)

where C is a contour in B-space formed by the vector
^

B
along the beam path (Fig. 16).
Assuming that projection Bzof B to the beam direc-

tion is �xed Bz=B =cos � = const, the solid angle sub-
tended by the contour C is 
 = 2�(1� cos �) and

2(C) = 
 = 2�(1� cos �) (C24)

This deviation of the rotation angle from the standard
precession �0(t) was con�rmed by the experiment.
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