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A regular method is given for calculating in the quasi-classical approximation the amplitude 
for above-barrier reflection of a particle from a one-dimensional potential barrier, by the 
use of the properties of the potential in the complex plane. 

IN a previous paper1 an expression has been found 
for the amplitude for reflection of a particle from 
a one-dimensional potential barrier in the quasi
classical approximation, and it was shown that in 
cases in which the potential U is an analytic func
tion which has no singularities on the real axis the 
reflection amplitude is exponentially small and can 
be put in the form of an iteration series in which 
all the terms are of the same order. This problem 
has been treated earlier in a number of papers. 2- 4 

In these papers, however, the authors confined 
themselves to only the first terms of the iteration 
series and consequently obtained an incorrect co
efficient for the exponential. For this same rea
son the results found in references 3 and 4 for the 
three-dimensional problem of the scattering of 
high-energy particles by centers of force in the 
region of classically inaccessible angles are also 
incorrect. 

The method of reference 1 is, however, ex
tremely cumbersome. Although it provides an 
elucidation of the structure of the series, it re
quires a knowledge of the answer for some par
ticular case. The purpose of the present note is 
to present a much simpler and more regular 
method for getting the amplitude for above-barrier 
reflection (without requiring previous knowledge 
of the answer for any particular case ) . 

The present method, like the so-called Zwaan 
method, 5•6 is based on an investigation of the be
havior of the wave function in the complex plane. 
Let U ( x) be an analytic function of x which has 
no singularities on the real axis, and such that the 
particle energy E > U (x) for all real x. We shall 
assume that the particle is quasi-classical: 

kd';:Pi, (1) 

where d is a characteristic dimension of the po
teJ:ttial U ( x ) . 

The Schrodinger equation 

d2'¢fdx2 + p2'¢ = 0, p2 = 2m (E- U) (2) 
has a solution 1/Jo that behaves asymptotically like 
eip+x for x- + oo. Then for x-- oo the function 
1/Jo behaves like aeip_x + be-ip_x, where p~ 
=lim p2(x) for x- ± oo, and a and b are con
stants. The reflection amplitude A is the ratio 
b/a. 

It is well known that in the quasi-classical ap
proximation considered here the equation (2) has 
approximate solutions of the form 7 

X 

'¢± = -y~exp(±i ~pdx), (3) 

X 

where x is an arbitrary lower limit. The solutions 
lfl± can be interpreted as waves traveling in oppo
site directions. The general solution can be rep
resented in the form 

(4) 

where a and b are constants. This way of writ
ing the function has meaning, however, only in 
cases in which the two terms in the right member 
of Eq. (4) are of the same order of magnitude, 
since the solutions themselves are inexact and the 
separation into waves traveling in different direc
tions is defined only to the fractional accuracy 
,..., 1/kd. 

The coefficients a and b take on exact mean
ings only for x- ± oo, where p (x) - P± = canst. 
In the case considered we have for x- + 00 

00 

a = exp [ i ~ (p - p+) dx - ip+x J, b = 0. 

X 

According to what has been said, as we go along 
the real axis the coefficient a remains unchanged 
to accuracy 1/kd, and b is everywhere not larger 
than order of magnitude 1/kd. For real x <I xI 
:S d ) , however, the exact value of b is not defined. 
Therefore we cannot determine the value of b for 
x - - oo by moving along the real axis. 
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The idea of the method is to leave the real axis 
and move in the complex plane along a line L on 
which the two waves are of the same order of 
magnitude. First of all it is clear that the condi
tion 

X 

Im ~ pdx = const (5) 

must hold on the line L, since otherwise one of 
the exponentials will increase and the other will 
decrease. Furthermore, this line must pass through 
zeroes or singularities of the function p2• In fact, 
otherwise the solutions ¢+ will be correct to accu
racy 1/kd along the entire line L and all of the 
difficulties still remain. 

Thus we can try to find the coefficient b in the 
following way. We continue the solution that be
haves like eip+x for Re x - + oo away from the 
real axis into the upper half-plane of x until we 
get to the first line L that satisfies the stated 
condition. This can always be done, because the 
potential vanishes for I xI- oo. We then move 
along L to a zero or singularity x0 of the function 
p2• Near x0 the solution ¢+ with which we came 
to the point will be irregular, and we must "join 
it on" to the solution of the approximate equation 
obtained from Eq. (2) by expanding p2 in powers 
of x- x0• We then make the passage around the 
point x0 that is necessary to get to the branch of 
L that goes toward Re x - - oo • By moving along 
this branch and then going down to the real axis 
we get the coefficient b. 

Let us begin with the case U/E ~ 1. In this 
case the simplest and most likely situation is that 
x0 is a simple root of the function p2• In analogy 
with the case of below-barrier reflection we shall 
speak of a complex "turning point," since x0 sat
isfies the equation 

U(x0) =E. (6) 

Near x0 we can write approximately 
X 

P = cVx- xo; ~ pdx = ~ C (x - xo)'l'. (7) 
x, 

X 

It is obvious that the lines Im J p dx go out from 
xo 

the point x0 at angles of 27r/3 with each other. 
Two of them are the branches of the curve L, as 
is shown in Fig. 1, which represents schematic-

x 
ally the level lines of Im J p dx. Near x0 Eq. (2) 

is of the form 
xo 

'ljl" + 0 (x - xo) 'ljl = 0. (8) 

FIG. 1 

The solution of this equation that goes over into 
the wave traveling "to the right" on the "right" 
branch L1 takes the form 

'ljl = CV x- xoHiJ! (+ C (x- xo)'l•)· (9) 

Using the well known asymptotic formulas for 
the Hankel functions, one can show that for 
C ( x - x0 )312 » 1 the function (9) has the form 

X 

CV x- xoHfJ!( ~ C (x- xo)'l}-~ /,; exp (i~ pdx -i 51~). 
x, (10) 

This solution differs from 1/Jo by a constant factor. 
Since we are concerned only with the ratio A= b/a, 
the value of this factor is of no importance for what 
follows. 

Let us now go over to the branch L2; to do so 
we make a rotation by the angle - 27r/3 and ex
press the function HV~ on the branch L2 in terms 
of its value and that of H1J~ on L1• To do so we 
use the relation (cf., e.g., reference 8) 

HiJ! (e-i"z) = HiJ! (z) + e-·'"13 HiJ.> (z). (11) 

Using the asymptotic formulas for H1}~< z) and 
H~~(z) for large positive z, we get on L2 

'ljl = CV x- xoH~1~> (~ C (x- xo)'l•) 
X 

1 [ ( . \ d . 5~ ) ~ ,,- exp - t J p x- t 12 
r p Xo 

X 

+e-in/3 exp (i ~ pdx + i ;; )]. 
x, 

(12) 

We see that on L2 the two waves in fact are of the 
same order of magnitude and therefore can be dis
tinguished. Their coefficients remain the same 
also for Re x - - oo • 

We still have to go over from functions of the 
X 

type exp ( ± i J p dx) to functions that behave like 
xo 

exp (±ip_x) for x-- oo. To do this we use the 
obvious relations 

X x, 

~ pdx = p_x - <po, <pn = ~ (p - p_) dx + p_x0 , (13) 
-co 

and thus get from Eq. (12) 
'ljl ~ Jp (eiP-Xe-i(<p,+5n/12) + e-ln/3 e-ip_x ei('l',+5r.Jb) J. (14) 
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X 

We emphasize that the coefficient of exp (i J pd.x) 
xo 

is not changed, since in the passage below the 
point x0 

X X 

exp ( i ~ pdx) ~ exp (- i ~ pdx ) . 
x. x0 

From Eq. (14) we find 

A = b! a = - ie2i~,. (15) 

It is not hard to extend this result to the case 
in which p2 has at x0 a singularity or zero of the 
form p2 = c2( x- x0 ) 2/3-2 (with {3 > 0). In this case 
the solution of the equation 

1jl" + fY (X- Xo) 2~-21jl =·0, 

that goes over into a wave running to the right on 
Li has the form 8 

X 

(1) ( C 1 { . \ d in (1 )} 1jl = H,;,~ lf (-"' - X0)") - -y- exp t ':/ x- T [3 + 1 . 
p x, 

X 

The level lines of Im J p d.x = 0 go out from x0 

xo 
at angles rr/ {3 with each other. Therefore in this 
case the passage from Li to L2 is equivalent to 
a change of the argument of ( x - x0 )f3 by - rr. 
Using the general formula for rotation by - rr 

and the asymptotic formulas for HW,<2>( z ), we get 

=- tl Sin- sin- e2'~• A .f • rt I . n) . 
\ ~ 2~ ' 

where cp 0 is defined by Eq. (13). For {3 =% we 
get the result already known. 

If on the single line L there are not one but 
several singularities (on zeroes) xi, x2, • • • of 
the function p2, their contributions to A are addi
tive if the condition 

(16) 

is satified. If, on the other hand, the condition 
(16) is not satisfied, it is necessary to treat the 
equation with close-space singularities. 

If we abstract from accidental coincidences, 
the situation with two close-spaced zeroes arises 
in the case of small values of the ratio ( E- U )/E. 
In this case the energy of the particle is not much 
above the barrier, and near the point on the real 
axis of x at which U takes its maximum value 
there are two closely spaced complex conjugate 
roots of p2• Here, however, there is no need to 
go off into the complex plane, since the line L 

FIG. 2 

coincides with the real axis. Physically this is 
associated with the fact that in this case the re
flection coefficient is not small. This situation 
has been treated in detail earlier (cf. e.g., ref
erence 6). 

A zero and a pole are close together for small 
values of the ratio U/E. In fact, the potential U 
takes large values equal to E only in the complex 
plane near a singularity. Let us consider the 
case of a simple pole x0, near which U ( x) has 
the form 

V (x) = VoXol (x- Xo). (17) 

Then the root xi of the function p2 = 2m ( E - U ) 
is determined from the equation 

X1 = Xo (1 +VolE). (18) 

The condition for the zero and pole to be close 
together is 

X 

I ~ pdx I ~ I u; kx0 j ;(; 1. (19) 

Near x0 and xi we have 

p2 = k2 (x- x1)/(x- Xo), (20) 
X 

~ pdx = k [Vfx--- xo) (x- x1) · 

x, _ U0x0 I ( x- x0 - (U0Xo!2E) + f (x- x0 ) (X- x,) ) l (Z1) 
2£ 11 - U0x0 j2E ~ • 

X . 

The position of the level lines of Im J p d.x near 
x0 and xi is shown schematically in Fig. 2. A cut 
is taken through the point x0, which is a singular 
point of the Eq. (2). As L one can take, for ex-

x 
ample, the line Im J p d.x = 0. * Its two branches 

xi 
Lto L2 are shown in Fig. 2. Obviously for I x- xo I 
»I xi- x01 the passage from Li to L2 corresponds 
to a rotation through the angle - rr. t 

*At first glance it seems natural to take for L the line 

Im f pdx = 0. Unfortunately, however, this line has only one 

bri&ch and does not go to infinity in one of the directions (cf. 
Fig. 2). 

twe emphasize that in the case of the pole the results of 
going around above and below are not the same, since in going 
around above we cross the cut. In the case in which the point 
x0 was a simple zero of p 2 the results of going around above 
and below coincided, since a simple zero of p2 is not a sin
gular point of the equation (2). 
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The solutions of the approximate equation* 

'1-'" +k2 l(x-x1)/(x-x0)]\j! =0 

are of the form 

\jJ = W=v:,(± z), 'A=-~ ikx0 U0 / E, 

(22) 

2 = - 2ik (x- x0), (23) 

where W'A,p. are the Whittaker functions (cf. refer
ence 8). The asymptotic formulas for the Whittaker 
functions for large I z I are of the form 

(i arg z I < rt). 
We see that for large values of k ( x - x0 ) on 

the branch L1 
X 

(24) 

W),,';,(z)-.£'i•exp('Aln :- +i~pdx) 
x, 

(arg z =- 7 ). 
(25) 

On L2 the second solution W _.., 1. has the "'•2 
asymptotic formula 

X 

W -1.,'/, (- z)--+ £'/•exp (--'A In~/,- i ~ pdx), (26) 

and we shall set -A.= e-i7TA., -z = e-i7Tz. 
Equation (22) is noninvariant under change of 

sign of (x-x0 ), and therefore there is no linear 
connection between W A.,p. ( - z ) and W ±A.,p. ( ± z ) . 
Equation (22) is, however, invariant under rotation 
through 27T around the point x0• Therefore there 
does exist a linear connection between W A.,p. ( e -27Tiz ) 
and W±A.,p.(±z) (cf. reference 10): 

2nie-ir.l. 
- r (1;2 + 11 _ t,) r (1!2 _ 11_~,) W -'·~'- (- z). (27) 

On L2 the argument of z is - 37Ti/2. Therefore 
in the right member of Eq. (27) we have arg ( ± z) 
= ± i7T/2. Using the asymptotic formulas (24) and 
going over, as in the case of the simple zero, to 
solutions that behave like exp (±ip_x) for x-- oo, 

we get 

A= F (1.) exp {2i [ ~' (p- p_) dx + p_x1 ]}, (28) 
-00 

F ('A) = 2rtie-~Ain(-A/e) ;r (-'A) r (I- 'A). (29) 

If lA. I,.., U/nv » 1, then F(A.) ~ -i, and Eq. (28) 
goes over into Eq. (15). In the opposite case with 
U/nv « 1 we have F (A.) ~ - 27TiA., and Eq. (28) 
gives the Born approximation: 

*An analogous equation has been considered by Denisov" 
in connection with a different problem; in Denisov's case, how
ever, unlike the present problem, the zero and pole were on the 
real axis, which decidedly alters the situation. 

A = - 2ni'Ae21 P-x,_ (30) 

Taking the square of the absolute value of the 
scattering amplitude (28), we get the reflection 
coefficient 

R = I A 12 =IF ('A) 12 exp { 4ilm ~· pdx} . (31) 
-oo 

In the one-dimensional case the formulas of 
Gol'dman and Migdal3 and of Saxon and SchifP 
give the same result 

x, 

A =- 2rti'A exp { 2i [ ~ (p - p_) dx + p_x1 J} . 
-oo 

This differs from Eq. (28) by the replacement of 
the function F (A.) by the quantity - 27TiA.. As we 
have shown, this is correct only in the Born case 
U/nv « 1. In the case U/nv ,.., 1 the results of 
references 3 and 4 are correct only in order of 
magnitude. 

In conclusion the writers express their deep 
gratitude to L. D. Landau for helpful discussions. 

1 Pokrovskii, Savvinykh, and Ulinich, JETP 34, 
1272, 1629 (1958), Soviet Phys. JETP 7, 879, 1119 
(1958). 

2 L. I. Schiff, Phys. Rev. 103, 443 (1956). 
3 I. I. Gol'dman and A. B. Migdal, JETP 28, 394 

(1954), Soviet Phys. JETP 1, 304 (1955). 
4 D. S. Saxon and L. I. Schiff, Nuovo cimento 6, 

614 (1957). 
5 E. C. G. Stueckelberg, Helv. Phys. Acta 5, 369 

(1932). 
6 E. C. Kemble, Phys. Rev. 48, 549 (1935). 
1 L. D. Landau and E. M. Lifshitz, KsaHTosaH 

MexaHHKa (Quantum Mechanics), Vol. 1, Gostekhiz
dat 1948, pp. 192-193. [Transl., Pergamon, 1958]. 

8 I. M. Ryzhik and I. S. Gradshte1n, Ta6JIHl1bi 
HHTePpaJios ( Tables of Integrals ) , Gostekhizdat, 
1951. 

9 N. G. Denisov, PaAHOTeXHHKa 11 3JieKTpoHHKa 
(Radio Engineering and Electron Physics) 4, 388 
(1959). 

10 Higher Transcendental Functions, Bateman 
Manuscript Project, McGraw-Hill, 1953. H. Buch
holz, Die confluente hypergeometrische Function, 
Springer-Verlag, 1953. 

Translated by W. H. Furry 
292 


