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Chapter 1

Barrier Penetration: Degenerate Classical Min-
ima

A classical particle is always reflected by a potential barrier if its energy is lower
than the potential. In contrast, a quantum particle has a non-vanishing prob-
ability to tunnel through a barrier, a property also called barrier penetration
or tunnelling.
This chapter is devoted to a study of a first physical manifestation of bar-

rier penetration. Using the path integral formalism, we evaluate, in the semi-
classical limit ~ → 0, the splitting between classically degenerate energy levels
corresponding to symmetric minima of a potential. In the next chapter we cal-
culate, in the same limit, the decay rate of metastable states. Since no classical
trajectory can be associated to barrier penetration, one may wonder how it
is possible to evaluate such effects in the semi-classical limit. Actually, it has
been noticed that, formally, barrier penetration has a semi-classical interpreta-
tion in terms of classical particles moving in imaginary time (see the discussion
at the end of section 1.1). The Euclidean formalism based on calculating the
density matrix at thermal equilibrium e−βH , describes formally an evolution
in imaginary time. We verify, in this chapter, that indeed it allows evaluating
barrier penetration effects.
Although the methods can be generalized, we mainly discuss properties of the

ground state or close excited energy levels and, thus, for example, the partition
function for β → ∞. Our tool is the steepest descent method applied to the
path integral, but in this problem the saddle points correspond to solutions
of the equations of the classical motion that are no longer constants. These
solutions satisfy one condition: the difference between their action and the
action of the minimal constant solution remains finite when β → ∞. One
associates to such solutions the name instanton.
To calculate instanton contributions at leading order, one must master two

problems that are increasingly difficult: find the saddle points by solving clas-
sical equations, expand the integrand around the saddle point and evaluate the
path integral at leading order by integrating over Gaussian fluctuations.
Note that calculations based on the steepest descent method lead to semi-

classical evaluations that can also be obtained by solving the Schrödinger equa-
tion in the WKB approximation, but the steepest descent method can be gen-
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eralized much more easily to barrier penetration effects in quantum field theory.
Finally, as examples we discuss the quartic double-well potential and the

periodic cosine potential.

1.1 Quantum evolution. The semi-classical limit

In this chapter, we consider the non-relativistic quantum mechanics of a particle
mainly in one space dimension with a simple Hamiltonian of the form

H(t) = p̂2/2m+ V (q̂) , (1.1)

where the operators p̂, q̂ are d-component vectors and V is a regular function
of q. The canonical commutation relations between the components of q̂ and
the d components of the momentum operator p̂ are

[q̂, p̂] = i1 , (1.2)

where 1 is the identity operator.
The evolution operator U(t′′, t′) between time t′ and t′′ is a unitary operator

solution of

i~
∂U

∂t
(t, t′) = H(t)U(t, t′) , U(t′, t′) = 1 . (1.3)

When H is time-independent, U(t′′, t′) = e−iH(t′′−t′)/~ and the Hamiltonian is
the generator of time-translations. For the matrix elements of U , in the basis
in which the position operator q̂ is diagonal, equation (1.3) takes the form of a
Schrödinger equation

i~
∂

∂t
〈q |U(t, t′)| q′〉 =

[

− ~
2

2m

∂2

(∂q)2
+ V (q, t)

]

〈q |U(t, t′)| q′〉 (1.4)

with the boundary conditions

〈q |U(t′, t′)| q′〉 = δ(q − q′).

It can be shown that this equation can be solved formally in the form of a path
integral

〈q |U(t′′, t′)| q′〉 =
∫

[dq(t)] eiS(q/~),

where S is the classical action:

S(q) =
∫ t′′

t′
dt
[

1
2m(q̇)2 − V (q, t)

]

and the symbol
∫

[dq(t)] means here sum over all paths satisfying the boundary
conditions q(t′) = q′ and q(t′′) = q′′ [1, 2].

In what follows, we denote by [dq(t)] (with brackets) the integration measure
to distinguish path integrals from ordinary integrals.
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Path integral and semi-classical limit. In the limit in which the classical ac-
tion is much larger than ~, the path integral can be evaluated by the stationary
phase approximation. The critical path that gives the leading contribution to
the path integral is then obtained by expressing that the action is stationary
under a variation of the path. Thus, the critical path is exactly the classical
path, that is, the path solution of the classical equations of motion. For a time-
independent potential and in d = 1 space dimension, the classical trajectory is
given by inverting the relation

t− t′ = ±
∫ q

q′

ds
√

2m
(

E − V (s)
)

with the boundary condition

t′′ − t′ = ±
∫ q′′

q′

ds
√

2m
(

E − V (s)
)

.

However, in quantum mechanics, barrier penetration, or tunnelling, corre-
sponds to the classically forbidden region where V q) > E and has no classical
analogue. We then notice that, formally, the forbidden region corresponds to
a classical trajectory in imaginary time. Since we will be only interested in
calculating barrier penetration coefficients, we can thus study imaginary time
evolution, that is, the matrix elements of the operator e−τH/~, which is iden-
tical to the matrix density at thermal equilibrium e−βH /Z (Z = tr e−βH) up
to a change in parametrization β 7→ τ/~. We will work in the framework of
quantum statistical physics and evaluate the matrix elements of e−βH in the
semi-classical limit [3]. Note that when β → ∞, the operator e−βH projects
onto the ground state of the Hamiltonian and, therefore, provides also a tool
to determine the structure of the ground state and the ground state energy.

1.2 Double-well potentials and instantons

We study a first family of quantum systems where tunnelling plays a role: the
Hamiltonian has a discrete space symmetry, but the potential has minima at
points that are not group invariant. The positions of the degenerate minima
are then related by symmetry group transformations.
Classically, the minimal energy solutions correspond to particles at rest in

any one of the minima of the potential. The position of the particle breaks
(spontaneously) the symmetry of the system. In contrast, for a quantum sys-
tem with a finite number of degrees of freedom, the ground state cannot be
degenerate. Therefore, the ground state must correspond to a symmetric wave
function, its modulus being maximal near each of the minima of the potential.
This phenomenon is a consequence of barrier penetration, a particle initially in
one of the minima having a non-vanishing probability to tunnel into the others.
We evaluate here the energy splitting between the classically degenerate energy
levels in the semi-classical limit.
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FIG. 1.1 – Double-well potential.

1.2.1 Double-well potentials

A simple example of such a situation is provided by a reflection-symmetric
Hamiltonian with a potential of the form of a symmetric double-well (figure
1.1):

H = 1
2 p̂

2 + V (q̂), (1.5)

where p̂ and q̂ are the momentum and position operator and the potential V (q)
is a regular, positive, even function; it is minimum at two symmetric points
q = ±q0 6= 0 where it vanishes:

V (q) = V (−q) ≥ 0 , V (±q0) = 0 , V (q0 + x) = 1
2x

2 +O(x4).

The Hamiltonian (1.5) is clearly invariant under the reflection q 7→ −q. To this
reflection is associated an operator P that acts on wave functions as

[Pψ](q) = ψ(−q). (1.6)

Reflection symmetry, then, is expressed by the commutation of the quantum
Hamiltonian H with the reflection operator P :

[P,H ] = 0 .

The two operators P and H can thus be diagonalized simultaneously: the
eigenfunctions ψn of H are even or odd functions:

[Pψn,±](q) = ψn,±(−q) = ±ψn,±(q).

Below we consider the two operators e−τH/~ and P e−τH/~. The eigenvalues
of e−τH/~ and P e−τH/~ corresponding to the eigenvectors ψn,±(q) are then,
respectively, e−τEn,±/~ and ± e−τEn,±/~.
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1.2.2 Path integral in the semi-classical limit

The properties of the ground state, in the semi-classical limit, can be inferred
from the partition function Z(τ/~) in the limit ~ → 0 and then τ → ∞. The
partition function is given by the path integral

Z(τ/~) =

∫

q(−τ/2)=q(τ/2)

[dq(t)] exp [−S(q)/~] (1.7)

with

S(q) =
∫ τ/2

−τ/2

[

1
2 q̇

2(t) + V
(

q(t)
)]

dt . (1.8)

The potential has two degenerate minima at q = ±q0. Thus, the action S
is minimum for the two constant functions q(t) = ±q0 that minimize both
the kinetic and potential term. For ~ → 0, these two functions correspond to
saddle points and, for symmetry reasons, they yield identical contributions. To
calculate the contribution of one saddle point, for example, q(t) = −q0, one
can set

q(t) = −q0 + x(t)
√
~ .

The action becomes

S(x)/~ =

∫ τ/2

−τ/2

[

1
2 ẋ

2(t) + V
(

q0 − x(t)
√
~
)

/~
]

dt . (1.9)

One then expands in powers of ~. The first terms are quadratic in x and
correspond to a harmonic oscillator. The existence of the two symmetric saddle
points yields a factor 2, which simply indicates the presence of two states of
energy E0 degenerate to all orders in ~, corresponding to two wave functions,
ψn,+ ± ψn,− if the functions have the same normalization, located in each of
the two wells of the potential.

1.2.3 Level splitting

Notation. From now on, we restrict the discussion to the two lowest energy
eigenvalues (the generalization to other levels is simple) and, thus, omit the
subscript 0 on E.
Quite generally, one can show that the ground state wave function ψ+ with

energy E+, can be chosen positive and the wave function ψ−(q) of the first
excited state with energy E−, vanishes once. The functions ψ+ and ψ−(q) are
thus even and odd, respectively.
The analysis of section 1.2.2 indicates that energy difference E−−E+ vanishes

faster than any power of ~ and, thus, cannot easily be inferred from a calculation
of tr e−τH/~. Indeed, in the double limit ~ → 0 then τ → ∞, one finds

tr e−τH/~ ∼ e−τE+/~+e−τE−/~

∼ 2 e−τ(E++E−)/2~ cosh[τ(E+ − E−)/2~]. (1.10)
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The partition function is dominated by the perturbative expansion of the half-
sum E = 1

2 (E++E−), and depends on the non-perturbative difference between
E+ and E− only at order (E+ − E−)2.
The difference E+ − E− can more easily been inferred from the quantity

trP e−τH/~. Indeed, in the same limits ~ → 0 then τ → ∞, one finds

trP e−τH/~ ∼ e−τE+/~ − e−τE−/~

∼ −2 sinh[τ(E+ − E−)/2~] e
−τ(E++E−)/2~ . (1.11)

Since E+ − E− vanishes to all orders in ~ (and E± ∼ 1
2~), at leading order

trP e−τH/~ ∼ −τ e−τ/2 E+ − E−
~

. (1.12)

Actually, it is convenient to calculate the ratio between the quantities (1.10)
and (1.11):

〈P 〉 ≡ trP e−τH/~
/

tr e−τH/~ ∼ − τ

2~
(E+ − E−). (1.13)

The path integral representation of trP e−τH/~ differs from the representation
of the partition function only in the (twisted) boundary conditions:

trP e−τH/~ =

∫

q(−τ/2)=−q(τ/2)

[dq(t)] exp [−S(q)/~] (1.14)

with the same action (1.8).

1.2.4 Instantons

Following the analysis of section 1.2.3, we calculate the twisted partition func-
tion

trP e−τH/~ =

∫

q(τ/2)=−q(−τ/2)

[dq(t)] exp [−S(q)/~] (1.15)

with

S(q) =
∫ τ/2

−τ/2

[

1
2 q̇

2(t) + V
(

q(t)
)]

dt , (1.16)

for ~ → 0 and τ → ∞.
While the path integral representing tr e−τH/~ is dominated by the constant

saddle points q(t) = ±q0, these paths do not contribute to the integral (1.15)
because they do not satisfy the corresponding boundary conditions. This is
consistent with the property that the difference E+ −E− vanishes faster than
any power of ~. One must thus look for non-constant solutions of the equation
of the Euclidean classical motion. Moreover, the action of these solutions must
have a finite limit in the relevant limit τ → ∞, otherwise they do not con-
tribute. One associates to such solutions the name instanton, as if they would
correspond to particles.
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Since both the kinetic term and the potential are positive, this condition
implies that both vanish for |t| → ∞. This implies

q(−∞) = ±q0 and q(+∞) = ∓q0 .

The splitting between the two energy levels thus depends on the existence of in-
stanton solutions joining the two symmetric minima of the potential (Fig. 1.2).

The saddle point equation, obtained by varying the Euclidean action, is
identical to the equation of the usual classical motion (i.e., in real time) in the
potential −V (q):

−q̈ + V ′(q) = 0 . (1.17)

In the limit τ → ∞, for finite action solutions qc(t), the integration of the
equation yields

1
2 q̇

2
c (t)− V

(

qc(t)
)

= 0 . (1.18)

Moreover, if qc(t) is a solution, qc(t − t0) is a solution. For τ large but finite,
the parameter t0 varies in an interval of size τ .

The integration of equation (1.18) implies that qc(t) is obtained by inverting

t− t0 = ±
∫ qc

0

dy
√

2V (y)
.

Moreover, one infers from equation (1.18) that the corresponding action can
be written as

A =

∫ +∞

−∞
dt q̇2c (t) . (1.19)

Once the saddle point is identified, the corresponding contribution to the path
integral is, in general, given at leading order by a Gaussian integration. Here,
the integration involves a rather subtle problem that we discuss later. However,
note that we have found two families (two signs) of degenerate saddle points,
which depend on the parameter t0. Since for τ large but finite, t0 varies in an
interval of size τ , the sum over all saddle points generates a factor τ , consistent
with expression (1.13).

qc(t)

t0 t

FIG. 1.2 – Instanton-type solution.
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1.2.5 Gaussian integration and zero mode

We now expand the action S(q) around the saddle point, setting

q(t) = qc(t) + r(t) , r(τ/2) = −r(−τ/2).

To second order in r, the expansion takes the form

S(qc + r) = A+

∫ τ/2

−τ/2

dt
[

1
2 ṙ

2(t) + V ′′(qc(t)
)

r2(t)
]

+O(r3).

The quadratic form in r can be written as

Σ(r) =

∫ τ/2

−τ/2

dt
[

1
2 ṙ

2(t) + 1
2V

′′(qc(t)
)

r2(t)
]

=
1

2

∫

dt1dt2 r(t1)M(t1, t2)r(t2),

where

M(t1, t2) =
δ2S

δqc(t1)δqc(t2)
=
[

−d2t1 + V ′′(qc(t1)
)]

δ(t1 − t2). (1.20)

The differential operator M acts on a function r(t) as

∫

dt′M(t, t′)r(t′) =
δ

δr(t)
Σ(r) = −r̈(t) + V ′′(qc(t)

)

r(t). (1.21)

It has the form of a Hermitian quantum Hamiltonian, t playing the role of a
position variable and V ′′(qc(t)

)

being the potential. All its eigenvalues are real
as well as its determinant.
Note that in the limit τ → ∞, only the trajectories that satisfy r(±∞) = 0

contribute to the path integral in such a way that the boundary conditions are
automatically satisfied.
Naively, the Gaussian integral over r(t) then leads to

trP e−τ/~ ∝ e−A/~

∫

[dr(t)] exp (−Σ(r)/~) ∝ e−A/~

√

det(M/~)
,

an expression that must be evaluated in the limit τ → ∞.

The zero mode. Differentiating the equation of motion (1.17) with respect
to t, one finds

[

−d2t + V ′′(qc(t)
)]

q̇c(t) = 0 . (1.22)

Comparing with equation (1.21), one recognizes the action of M on q̇c. Since
the function q̇c(t) is square integrable (equation (1.19)), the equation implies
that q̇c(t) is an eigenvector of M with vanishing eigenvalue:

Mq̇c = 0 . (1.23)
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The Gaussian integration yields a result proportional to (detM)−1/2, which is
thus infinite!
The problem could have been anticipated: as we have already pointed out,

due to time-translation invariance, one finds a one-parameter family of degen-
erate saddle points related by continuous time-translations. The action is thus
invariant under an infinitesimal variation of qc(t), which corresponds to a vari-
ation of the parameter t0 and, thus, is proportional to q̇c. The problem that
we face here is by no means specific to path integrals, as the example of an
ordinary integral will show. Its solution requires the introduction of collective
coordinates associated to the continuous symmetries of the integrand.
Another remark is important here. One infers from the general theory of

orthogonal functions that the number of zeros of eigenfunctions of the Hamil-
tonian M is directly related to the hierarchy of eigenvalues: the ground state
ofM has no zero, the first excited state has one zero... In the present example,
the eigenfunction q̇c(t) does not vanish (see Fig. 1.2): thus, it corresponds to
the ground state, and all other eigenvalues of M are positive.

1.3 Collective coordinates and Gaussian integration

To investigate the problem of the zero mode, we first consider an ordinary
integral in which the integrand is invariant under some continuous group of
transformations, here rotations in the plane.

1.3.1 Zero modes in simple integrals

We consider a double integral of the general form:

I(g) =

∫

d2x e−S(x)/g, S(x) = −x2/2 + (x2)2/4 , (1.24)

where x is the two-component vector (x1, x2), and the integrand is a function
only of x2.
For g → 0+, this integral can be calculated by the steepest descent method.

A naive approach is the following: the saddle points are solutions of the equa-
tion

∂S

∂xµ
= −xµ(1− x2) = 0 . (1.25)

The origin x = 0, which corresponds to a relative maximum, is not a relevant
saddle point. The minima correspond to

|x| = 1 . (1.26)

Due to the rotation invariance of the integrand, one finds here also a one-
parameter family of degenerate saddle points belonging to a circle, since only
the length of the vector x is determined by the saddle point equation. If
one chooses one particular saddle point and evaluates its contribution in the
Gaussian approximation, one finds a result that involves the determinant of
the matrix

Mµν =
∂2S

∂xµ∂xν

∣

∣

∣

∣

|x|=1

= 2xµxν . (1.27)
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The matrix is a projector on the vector x. The vector orthogonal to x corre-
sponds to a flat direction for the integrand and, thus, is an eigenvector with a
vanishing eigenvalue.
Here, the problem has a straightforward solution: the integral over the an-

gular variable that parametrizes the set of all saddle points, also called the
collective coordinate, must be calculated exactly; only the integral over the
length of the vector can be evaluated by the steepest descent method. This is
the strategy we want to generalize to path integrals.

1.3.2 Collective coordinates in path integrals

In the case of a path integral also, it is necessary to integrate exactly over the
variables that parametrize the saddle points, the so-called collective coordinates
[4]. In the example of the instanton solutions of equation (1.18), the time-
translation parameter t0 is the collective coordinate. To be able to integrate,
one must explicitly factorize the integration over the collective coordinate in the
integration measure. This is the idea of the method of collective coordinates.
The problem is slightly more subtle than in the example (1.24) because the
number of integration variables is infinite.

Collective coordinates and Faddeev–Popov’s method. To factorize the integra-
tion over the collective time parameter (the collective coordinate), we introduce
the so-called Faddeev–Popov’s method.
We denote now by qc(t) a particular solution of the saddle point equation

(1.18) corresponding to t0 = 0 and the general solution then is qc(t− t0).
We start from the identity

1 =
1√
2πξ

∫ +∞

−∞
dλ e−λ2/2ξ,

where ξ is an arbitrary constant. We introduce the vector with unit L2 norm

g0(t) = q̇c(t)/‖q̇c‖ with ‖q̇c‖2 =

∫

dt q̇2c (t).

We then change variables, λ 7→ t0, setting

λ =

∫

dt g0(t)
(

q(t+ t0)− qc(t)
)

.

We obtain the new identity

1√
2πξ

∫

dt0

[∫

dt g0(t)q̇(t+ t0)

]

exp

{

− 1

2ξ

[∫

dt g0(t)
(

q(t+ t0)− qc(t)
)

]2
}

= 1 . (1.28)

The constant ξ has been introduced partially for cosmetic reasons, but is con-
sidered to be of order ~.
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We insert identity (1.28) into the path integral (1.15):

trP e−τH/~ =
1√
2πξ

∫

dt0

∫

[dq(t)]

[∫

dt g0(t)q̇(t+ t0)

]

exp [−Sξ(q)/~] ,

where the total action

Sξ(q) = S(q) + ~

2ξ

[∫

dt g0(t)
(

q(t+ t0)− qc(t)
)

]2

is no longer invariant under time-translations because time appears explicitly
through the function qc(t) and thus g0(t).
The function q(t + t0) can now be renamed q(t). This affects S(q), but we

change variables, t− t0 7→ t, in the action. Then, for τ = ∞, one recovers the
initial action because the integration domain is not modified.
The integrand then no longer depends on the variable t0 and the integration

over t0 is immediate. For τ → ∞,

trP e−τH/~ ∼ τ√
2πξ

∫

[dq(t)]

[∫

dt g0(t)q̇(t)

]

exp [−Sξ(q)/~] (1.29)

with

Sξ(q) = S(q) + ~

2ξ

[∫

dt g0(t)
(

q(t)− qc(t)
)

]2

.

At leading order for ~ → 0, in the Jacobian q(t) can be replaced by qc(t) and
thus

∫

dt g0(t)q̇(t) ∼
∫

dt g0(t)q̇c(t) = ‖q̇c‖.

1.3.3 Gaussian integration

The saddle point equation becomes

δS
δq(t)

+
~

ξ
g0(t)

∫

dt′ ġ0(t
′)
(

q(t′)− qc(t
′)
)

= 0 . (1.30)

Clearly, the solution of this equation is q(t) = qc(t). The second functional
derivative of the action at the saddle point is then modified by an additional
contribution:

δ2S
δqc(t1)δqc(t2)

7→Mξ(t1, t2) ≡
δ2S

δqc(t1)δqc(t2)
+

~

ξ
g0(t1)g0(t2).

The additional operator is a projector on to the eigenvector of δ2S/δqcδqc
corresponding to the vanishing eigenvalue. The modified operator, thus, has the
same eigenvectors and the same eigenvalues as the initial operator δ2S/δqcδqc,
with one exception: the eigenvalue corresponding to the eigenvector q̇c ∝ g0 is
now

µ = ~/ξ (1.31)
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instead of 0. Therefore, the determinant of the operatorMξ no longer vanishes
and the problem of the zero mode is solved.
The normalization of the path integral can be inferred by comparing it to

the partition function Z0(τ/~) of the harmonic oscillator:

Z0(τ/~) =

∫

q(−τ/2)=q(τ/2)

[dq(t)] exp

{

− 1

2~

∫ τ/2

−τ/2

dt
[

q̇2(t) + q2(t)
]

}

, (1.32)

which for τ → ∞ reduces to e−τ/2. In this limit, the Gaussian integral can be
expressed in terms of the operator

M0(t1, t2) =
[

− (dt1)
2
+ 1
]

δ(t1 − t2). (1.33)

As we indicate later, the quantity that can be easily evaluated is the determi-
nant of the operator (M + ε)(M0 + ε)−1, where ε is an arbitrary constant. For
ε→ 0, this expression vanishes linearly in ε and we thus set

lim
ε→0

1

ε
det (M + ε) (M0 + ε)

−1 ≡ det′MM−1
0 , (1.34)

where det′M means determinant in the subspace orthogonal to q̇c. On the
other hand, what is needed here is (the factors ~ cancel in the ratio of Gaussian
integrals)

detMξ = det(M + µ |0〉 〈0|)M−1
0

= lim
ε→0

det (M + ε+ µ |0〉 〈0|) (M0 + ε)
−1
,

where |0〉 is s shorthand notation for the vector g0 and µ = ~/ξ. Then, after
some simple algebra,

det (M + ε+ µ |0〉 〈0|) (M0 + ε)
−1

= det (M + ε) (M0 + ε)
−1

× det
[

1 + µ |0〉 〈0| (M + ε)−1
]

= (1 + µ/ε) det (M + ε) (M0 + ε)
−1
.

In the limit ε→ 0, one thus finds

det′MM−1
0 ~/ξ .

Collecting all factors, one concludes that the Gaussian integration over the
configurations in the neighbourhood of the saddle point yields a factor

τ√
2π~

‖q̇c‖(det′MM−1
0 )−1/2 e−τ/2 .

As expected, the dependence on ξ has cancelled.
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Taking into account the two families of saddle points and the ratio 2 between
Z0(τ/~) and tr e−τH/~ for τ → ∞, one obtains

trP e−τH/~ / tr e−τH/~ ∼ τ√
2π~

‖q̇c‖
[

det′M (detM0)
−1
]−1/2

e−A/~ (1.35)

and, thus, using the result (1.13), the splitting of levels

E− − E+ ∼ 2

√

~

2π
‖q̇c‖

[

det′M (detM0)
−1
]−1/2

e−A/~ (1.36)

The difference decreases exponentially for ~ → 0 and, thus, faster than any
power of ~, a result consistent with the perturbative discussion of section 1.2.2.
Remark. We have calculated the instanton contribution only in the τ =

∞ limit, in which the action has boundary conditions invariant under time-
translations. The calculation for τ large but finite, involves a few additional
subtleties.

1.4 An example: The quartic double-well potential

The simplest explicit example is provided by the quartic double-well potential
corresponding to the Hamiltonian

H = 1
2 p̂

2 + 1
2

(

q̂2 − 1
4

)2
. (1.37)

The instanton and multi-instanton contributions have been studied very thor-
oughly [5–8].

1.4.1 Instantons

The saddle point equation, which is the equation of the classical motion in
Euclidean or imaginary time, is

−q̈(t) + 2q(t)
(

q2(t)− 1
4

)

= 0 . (1.38)

In the limit τ → ∞, the equation has two families of solutions with finite action:

q±c (t) = ± 1
2 tanh

(

(t− t0)/2
)

, (1.39)

where t0 is an integration constant, reflection of time-translation invariance for
τ infinite.
The corresponding value of the action is

S(qc) = 1
6 · (1.40)

Moreover, (equation (1.19))

‖q̇c‖ =
√
A =

1√
6
.
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Finally,

M = −d2t + 1− 3

2 cosh2(t/2)
.

The operator M has the form of a Hamiltonian of Bargmann–Wigner’s type:
the corresponding Schrödinger equation can be solved explicitly. Quantum
scattering is reflectionless and the poles of the S-matrix yield the spectrum of
the Hamiltonian. The determinant can also be calculated explicitly. Then,

det (M + ε) (M0 + ε)
−1 ∼

ε→0

ε

12
.

Using the general result (1.36) one obtains the asymptotic behaviour of E+−E−
for ~ → 0:

E− − E+ =
~→0

2

√

~

π
e−1/6~ (1 +O (~)) . (1.41)

Remark. It is possible to study the semi-classical effects to all orders in
an expansion in powers of e−1/6~ by a multi-instanton analysis [5--6]. This
has led to a conjecture, later proved to a large extent [7], which generalizes the
usual Bohr–Sommerfeld’s formula to the situation of potentials with degenerate
minima. The energy eigenvalues E of the Hamiltonian are solutions of a secular
equation that can be written, in the case of the quartic double-well potential,
as [8]

Γ2
(

1
2 −B(E, ~)

)

(

− 2

~

)2B(E,~)

e−A(E,~)+2π = 0 (1.42)

with

B(E, ~) = −B(E,−~) =
E

~
+

∞
∑

k=1

~
kbk+1(E/~), (1.43)

A(E, ~) = −A(E,−~) =
1

3~
+

∞
∑

k=1

~
kak+1(E/~). (1.44)

The coefficients ak(s) and bk(s) are even or odd polynomials in s according to
the degree k.
For ~ →, the perturbative expansion applies to energy eigenvalues E = O(~),

while the semi-classical WKB expansion assumes E = O(1). This amounts to
summing the terms of largest degree in E to all orders in ~.

1.5 The periodic cosine potential

We now consider the slightly more complicated problem of a periodic potential.
We examine the spectrum of the Hamiltonian

H = 1
2 p̂

2 + g−1 (1− cos q̂
√
g) , (1.45)

where the constant g > 0 plays the role of ~ and we thus we set ~ = 1.
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Since the cosine potential is periodic, it has an infinite number of degenerate
classical minima. We can expand the potential in powers of g around each
of the minima starting from a harmonic approximation. Correspondingly, the
energy eigenvalues have an expansion in powers of g, which is independent of
the chosen minimum. To all orders in g, the Hamiltonian thus has an infinite
number of degenerate ground states. However, we know that the spectrum of
the Hamiltonian H is continuous and has, at least for g small enough, a band
structure: this property again is due to barrier penetration.

1.5.1 Eigenvalues and eigenstates

We now introduce the unitary operator T that generates an elementary trans-
lation of one period 2π/

√
g. Since it commutes with the Hamiltonian,

[T,H ] = 0 , (1.46)

both operators can be diagonalized simultaneously. Each eigenfunction ψN,θ

of H is thus characterized by an angle θ (pseudo-momentum) eigenvalue of T :

TψN,θ = eiθ ψN,θ , HψN,θ = EN (g, θ)ψN,θ , (1.47)

where the eigenvalue EN (g, θ) is a periodic function of θ and EN (g, θ) = N +
1/2 +O(g).

The partition function in the θ-sector. We can consider the Hamiltonian in
the subspace of wave functions satisfying

Tψ(q) = eiθ ψ(q),

as a Hamiltonian Hθ on the interval (0, 2π/
√
g). It is still Hermitian but no

longer real. The corresponding partition function in the sector of angle θ is
then given by the sum

Z(β, g, θ) = tr e−βHθ =
∑

N

e−βEN(g,θ), (1.48)

In particular, for β large,

Z(β, g, θ) ∼
β→∞

e−βE0(g,θ) . (1.49)

Twisted partition functions. We also define the twisted partition function
Zl(β, g) = tr′ T l e−βH . The notation tr′ has the following meaning: since the
diagonal matrix elements of e−βH in configuration space are periodic functions
of q, we integrate only over one period. Thus,

Zl(β, g) =
1

2π

∫ 2π

0

dθ
∑

N

e−βEN (g,θ)

∫

dq ψ∗
N,θ(q)ψN,θ(q + 2πl/

√
g)

=
1

2π

∫ 2π

0

dθ
∑

N

e−βEN (g,θ) eilθ =
1

2π

∫ 2π

0

dθZ(β, g, θ) eilθ . (1.50)
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Inverting this last relation, we find

Z(β, g, θ) =

+∞
∑

l=−∞
e−ilθ Zl(β, g) =

+∞
∑

l=−∞
e−ilθ tr′ T l e−βH . (1.51)

This is the representation we now use to calculate Z(β, g, θ).

Path integral representation. The path integral representation of Zl(β, g) is

Zl(β, g) =

∫

q(β/2)=q(−β/2)+2πl/
√
g

[dq(t)] exp [−S(q)] (1.52)

with

S(q) =
∫ β/2

−β/2

dt
[

1
2 q̇

2(t) + g−1 (1− cos q
√
g)
]

. (1.53)

Note that a factor e−ilθ can be incorporated in the path integral. Indeed since

−il = −
√
g

2π

(

q(β/2)− q(−β/2)
)

= − i
√
g

2π

∫ +β/2

−β/2

dt q̇(t) ,

this corresponds to adding to S(q) the integral of a local density

S(q) 7→ Sθ(q) = S(q) + iθ
√
g

2π

∫ +β/2

−β/2

dt q̇(t) . (1.54)

The sum (1.51) over l then is obtained by summing over all trajectories con-
tributing in expression (1.52). When q is considered as an angular variable,
the integer l is the winding number corresponding to the number of coverings
of the circle and the integral of q̇ is a topological term that characterizes the
mappings of the circle S1 on S1:

Z(β, g, θ) =

∫

[dq(t)] e−Sθ(q) .

This expression has natural generalizations in the case of the θ-vacuum of the
CP (N − 1) model and non-Abelian gauge theories (see sections 6.2,6.3).

The large β limit. We now concentrate on the large β limit and, thus, the
lowest band N = 0. In a band, the energy eigenvalue is a periodic function of
θ that can be expanded in a Fourier series:

E0(g, θ) =
+∞
∑

−∞
El(g) eilθ , El = E−l . (1.55)

All coefficients El except E0 vanish to all orders in a perturbative expansion
in g. Like in the case of the double-well potential, we thus observe that it
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is difficult to determine the dependence on θ of the energy levels from the
partition function.
Instead we consider

Z1(β, g) = tr′ T e−βH ∼
β→∞

1

2π

∫ 2π

0

dθ eiθ e−βE0(θ,g) . (1.56)

For g → 0, E0(θ, g)−E0(g) vanishes faster than any power of g. Therefore, for
g → 0 and β → ∞, we can expand equation (1.56):

Z1(β, g) ∼ e−βE0(θ,g)

∫

dθ

2π
eiθ
[

1− β
(

E0(θ, g)− E0
)

+ · · ·
]

. (1.57)

The integration over θ selects E−1 = E1:

tr′ T e−βH ∼ −β e−βE0(θ,g) E1(g), g → 0 , β → ∞ . (1.58)

This equation can be more conveniently rewritten as

tr′ T e−βH / tr′ e−βH ∼ −βE1(g). (1.59)

If E1 does not vanish, this implies that translation symmetry is not sponta-
neously broken.

Remark. To evaluate the other Fourier series coefficients E2, E3, . . ., for g
small, a simple method is to consider tr′ T l e−βH for l = 2, 3, . . .. This evalua-
tion requires a multi-instanton analysis [5--6].

1.5.2 The instanton contributions

The path integral representations of the partition function tr′ T e−βH is given
by equation (1.52). We recall that q(−β/2) varies over only one period of the
potential. For β large and g small, due to the boundary conditions, the path
integral is dominated by instanton configurations which connect two consec-
utive minima of the potential. Solving the equation of motion explicitly, one
finds

qc(t) =
4√
g
tan−1 e(t−t0), (1.60)

and the corresponding classical action, in the infinite β limit, is

S(qc) = 8/g . (1.61)

Generalizing the calculations of the double-well potential, one obtains

E1(g) ∼
g→0

− 4√
πg

e−8/g . (1.62)

Without evaluating El for l ≥ 2 explicitly, one verifies that the correspond-
ing boundary conditions for tr′ T l e−βH select an multi-instanton configuration
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which for β large has an action 8l/g. Therefore, E1 gives the dominant non-
perturbative contribution for g small, and

E0(θ, g) = E0(g)−
8√
πg

e−8/g [1 +O(g)] cos θ +O
(

e−16/g
)

. (1.63)

Discussion. We have illustrated with two examples that, as anticipated, in
a theory in which, at the classical level, a discrete symmetry is spontaneously
broken because the classical potential has degenerate minima, the existence of
instantons implies that quantum fluctuations restore the symmetry.
Note that in the case of continuous symmetries, in contrast to discrete sym-

metries where quantum fluctuations lead to exponentially small effects in 1/~ or
the equivalent coupling constant, the effects of quantum fluctuations show up
already at first order in perturbation theory as a consequence of the Goldstone
phenomenon.
While in theories in which the dynamical variables live in flat Euclidean

space, instantons are always associated with a degeneracy of the classical mini-
mum of the potential, this is no longer necessarily the case when the space has
curvature or is topologically non-trivial.
An example is provided by the cosine potential with compactified space, the

position q representing a point on a circle of radius 2π/
√
g, corresponding to the

case θ = 0. The Hamiltonian then corresponds to an O(2) rotator in a potential
or a one-dimensional classical spin chain in a magnetic field. The classical
minimum is no longer degenerate because all minima are identified to one point
on the circle. The quantum ground state is equally unique since the Hilbert
space consists in strictly periodic eigenfunctions. Still instanton solutions exist
but they start from and return to the same classical minimum, winding around
the circle. They are stable because the circle is topologically non-trivial. They
generate the exponentially small corrections to the perturbative expansion that
we have determined above.

General spectral equation. For the cosine potential, to all orders in the ex-
pansion parameter and the number of instantons, it has been conjectured that
all energy eigenvalues are solution of the spectral equation of the form (here
written for the potential 1

16 (1− cos 4q)) [8]

(

2

g

)−B(E,g) eA(E,g)/2

Γ[ 12 − B(E, g)]
+

(−2

g

)B(E,g) e−A(E,g)/2

Γ[ 12 +B(E, g)]
=

2 cos θ√
2π

.

The first few terms of the perturbative expansions of the functions A and B
for the periodic potential are

B(E, g) = E + g
(

E2 + 1
4

)

+ g2
(

3E3 + 5
4 E
)

+O
(

g3
)

,

A(E, g) = g−1 + g
(

3E2 + 3
4

)

+ g2
(

11E3 + 23
4 E

)

+O
(

g3
)

.
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1.6 Several degrees of freedom.

In general, for paths in R
N , the equations of motion cannot be solved explicitly

and the discussion is more involved. However, there is one situation where the
existence of instantons can be proved, when the action takes the special form

S(q) = 1
2

∫

dt
{

q̇2(t) +
[

∇qU
(

q(t)
)]2
}

. (1.64)

This situation is not as artificial as it may appear since it occurs in the case of
path integrals associated with the Fokker-Planck equation or supersymmetric
quantum mechanics in the leading order approximation. We now assume that
U(q) is a polynomial with at least two isolated minima where ∇qU(q) thus
vanishes. Any instanton solution must start and end up at a minimum of the
potential. Using a remark that will again be useful later, we start from the
inequality

∫

dt
[

q̇(t)±∇qU
(

q(t)
)]2 ≥ 0 .

Expanding we obtain
S(q) ≥ |U(q1)− U(q2)|,

where q1 and q2 thus are two minima of the potential. Equality corresponds to
a local minimum of the action. Then, the classical solution must satisfy

q̇(t)±∇qU
(

q(t)
)

= 0 . (1.65)

These equations, which involve only the first order derivative in time, charac-
terize a gradient flow. Depending on the sign in equation (1.65), U(q) increases
or decreases along the classical path.
As an exercise, it is suggested to study the example in R

2,

U(q1, q2) = − 1
2

(

q21 + q22
)

− αq1q2 +
1
3

(

q31 + q32
)

+ αq1q2 (q1 + q2) ,

as a function of α.

One dimension. In one dimension, the form (1.64) is not a restriction since
it contains all Hamiltonians of the form (1.5). For example, for the quartic
double-well potential (1.37),

U(q) = 1
3q

3 − 1
4q

and, thus, |U(1/2)− U(−1/2)| = 1/6.
For the cosine potential,

U(q) = 4

g
cos(q

√
g/2)

and, thus, |U(2π/√g)− U(0)| = 8/g.



Chapter 2

Instantons and Quantum Metastability

We now study another situation in which quantum tunnelling plays a role: the
decay of metastable states. We assume a quantum particle initially located in
the well of a potential that corresponds to a local but not absolute minimum.
Due to quantum tunnelling, a quantum particle has a finite probability per unit
time to leave the well and this is the probability we now want to determine in
the limit ~ → 0.
As a restriction, we discuss only initial states localized deep in the well, that

is close to the pseudo-ground state in the well (the equivalent of a classical
particle almost at rest). We will show that, as for the perturbative calculation,
one can derive the decay rate from the partition function Z(τ/~) = tr e−τH/~

for τ → ∞.

V

q0 q

FIG. 2.1 – Potential well leading to metastability.

Quantum metastability. In the example of a potential of the type exhibited
in Fig. 2.1, the origin is not the absolute minimum of the potential. A state
corresponding to a wave function ψ(t), localized at initial time t = 0 (t is here
the real physical time of the Schrödinger equation) in the well of the potential
around q = 0, decays through barrier penetration. In order to understand how
to calculate the decay rate, we imagine varying a parameter in the potential
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in order to pass continuously from a situation where the origin is an abso-
lute minimum to a situation where it becomes only a relative minimum. In
the stable situation, the solution of the time-dependent Schrödinger equation,
corresponding to the ground state energy E0, behaves as

ψ0(t) ∼ e−iE0t/~ .

After analytic continuation, E0 becomes complex and, thus, ψ0(t) decreases
exponentially with time:

|ψ0(t)| ∼
t→+∞

e−| ImE0|t/~ .

The parameter |~/ ImE0| is the lifetime of a now metastable state with wave
function ψ(t). Let us point out that the decay of a state receives contributions
from the continuation of all excited states. However, one expects, for intuitive
reasons, that when the real part of the energy increases the corresponding
contribution decreases faster with time, a property that can, indeed, be verified
in examples. Thus, for large times, only the component corresponding to the
pseudo-ground state survives. We now show how to calculate ImE0 for ~ → 0.

2.1 Path integral: Steepest descent calculation and in-
stantons

We begin with a situation, where in the Hamiltonian

H =
1

2m
p̂2 + V (q̂),

the potential (assumed to be analytic) has an absolute minimum at the origin
where

V (q) = 1
2mω

2q2 +O(q3).

By an analytic continuation in a parameter in V , we pass to a situation where
the minimum of the potential at q = 0 is only relative and, thus, there exist
values of q for which V < 0 (figure 2.1.
The imaginary part of Z(τ/~) = tr e−τH/~ for τ → ∞ is expected to have to

form
ImZ(τ/~) ∼ Im e−τE0/~ ∼ −τ

~
ImE0 e

−τ ReE0/~ .

For ~ → 0, ReE0 can be replaced by the value its assumes in the harmonic
approximation and, thus,

ImZ(τ/~) ∼ −ωτ
~

e−ωτ/2 ImE0. (2.1)

Instantons. Since we have learned in chapter 1 that, in path integrals, tun-
nelling is related to instantons, we look for non-trivial saddle points of the path
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integral. The saddle point equation, obtained by varying the Euclidean action,
is

−mq̈(t) + V ′(q(t)
)

= 0 (2.2)

with q(−τ/2) = q(τ/2).
The functions

q(t) = qext. = const. , (2.3)

where qext. corresponds to an extremum of the potential, are clearly solutions.
We do not take into account the saddle points with V < 0 because one can
verify that the analytic continuation leads to integration domains that avoid
such saddle points. On the other hand, the contributions of saddle points cor-
responding to extrema where V > 0 are of order e−τVext./~ and, thus, negligible
for τ → ∞ and ~ ≪ 1 since we consider only energy eigenvalues of order ~.
Therefore, we look for solutions that have an action that has a finite limit

when τ → +∞, that is, instanton-type solutions.
The solutions of equation (2.2) with periodic boundary conditions correspond

to periodic motions in real time in the potential −V (q). It is clear that trajec-
tories can be found that oscillate around the minima of −V . For τ → ∞, one
end-point of the classical trajectory must converge toward a point where the
velocity and thus V ′(q) vanish. Moreover, the action remains finite in this limit
only if V (q(t)) and q̇ vanish for |t| → ∞. These conditions are compatible only
the corresponding classical trajectory comes increasingly closer to the origin.
Thus, the classical trajectory starts from the origin at time −∞, is reflected
at the zero q0 of the potential and returns to the origin for t → +∞. This
situation has to be contrasted with the situation of degenerate minima, where
the instanton interpolates between different minima of the potential.
A first integration of the equation of motion (2.2) yields

1
2mq̇

2(t)− V
(

q(t)
)

= 0 . (2.4)

In the limit τ → ∞, the classical solution qc(t) is thus given by (t0 is an
integration constant)

|t− t0| =
√
m

∫ q0

qc

dq′
√

2V (q′)
.

The instanton action. If qc(t) is a finite action solution on the interval t ∈
(−∞,+∞), then from equation (2.4) we infer

1
2m

∫

dt q̇2c (t) =

∫

dt V
(

qc(t)
)

and, thus, the corresponding classical action

S(qc) ≡ A = m

∫ +∞

−∞
dt q̇2c (t) = 2

∫ q0

0

√

2V (q)dq (2.5)
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is positive. The instanton thus gives a contribution of the order of e−A/~, which
decreases exponentially for ~/A→ 0.

Remarks.
(i) One may wonder whether it makes sense to take into account such small

contributions, since E0 is first dominated by an expansion to all orders in ~.
Actually, if one starts from a stable situation and proceeds by analytic contin-
uation, one can obtain two complex conjugate results. Each result is indeed
dominated by the same trivial saddle point q(t) ≡ 0, from which originates the
perturbation series whose terms are all real. In contrast, if one calculates the
difference between the two continuations, the contribution of the leading saddle
point cancels and the difference is dominated by the instanton. As a consis-
tency check, one must thus verify that the instanton contribution is purely
imaginary.

(ii) Since the Euclidean action is invariant under time-translations, the clas-
sical solution depends on an arbitrary parameter t0, which for finite τ , varies
in the interval [−τ/2, τ/2]. As in the example of section 1.2.1, one finds a
one-parameter family of degenerate saddle points. In the calculation of the
contribution of a saddle point the dependence on t0 disappears, and thus all
saddle points give the same contribution.

(iii) One could have also considered trajectories that oscillate n times around
the maximum of the potential in a time interval τ . It is easy to verify that the
corresponding action in the limit τ → ∞ becomes

S(qc) = nA , (2.6)

and yields a contribution of order e−nA/~. For ~ → 0, the n = 1 contribution
thus dominates the imaginary part of the path integral.

Leading order contribution: Gaussian approximation. The arguments of sec-
tion 1.2.1 apply also here. The naive steepest descent method with Gaussian
integration involves the determinant of the operator

M(t1, t2) =
δ2S

δqc(t1)δqc(t2)
=
[

−md2t1 + V ′′(qc(t1)
)]

δ(t1 − t2). (2.7)

A differentiation with respect to time of the equation of motion (2.2) yields
[

−md2t + V ′′(qc(t)
)]

q̇c(t) ≡Mq̇c = 0 . (2.8)

Thus, q̇c (which is square integrable, see equation (2.5)) is an eigenvector of
the Hermitian operator M and the corresponding eigenvalue vanishes.
However, let us point out one notable difference between this situation and

the situation of degenerate minima. As we have already pointed out, from the
general theory of orthogonal functions one infers that the number of zeros of
an eigenfunction of the Hamiltonian M is directly related to the hierarchy of
eigenvalues: the ground state of M has no zero, the first excited state has one
zero... Thus, the eigenfunction q̇c(t), which vanishes exactly once, for t = t0,
corresponds to the first excited state, and this implies that the operatorM has
one negative eigenvalue. The product det′M of the non-vanishing eigenvalues
of M is negative and

√
det′M is imaginary, as expected.
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2.2 Collective coordinates: Alternative method

Again, due to the existence of the time zero mode, it is necessary to introduce
a time collective coordinate, and one can use the Gaussian approximation only
for the modes orthogonal to q̇c. The method of section 1.3.2 can be adapted to
this new situation, but it is instructive to briefly outline an alternative solution
to the same problem.
We now denote by qc(t) the particular solution of the saddle point equation

(2.2) corresponding to t0 = 0 and, thus, the general solution is qc(t− t0).
To introduce an integration variable associated with time-translations, we

set
q(t) = qc(t− t0) + r(t − t0)

√
~, (2.9)

where t0 is no longer a simple parameter, but forms, together with the path
r(t) a new set of integration variables. However, an infinitesimal variation of t0
adds to q(t) a contribution proportional to q̇c. In order for the new set {t0, r(t)}
to include only independent variables, any variation of r(t) must be orthogonal
to a variation of t0:

∫

q̇c(t− t0)r(t − t0)dt = 0 . (2.10)

After a short calculation, one then recovers the Jacobian obtained by the
Faddeev–Popov method (for a general discussion see chapter 4). At leading
order, the Jacobian of the transformation that relates q(t) to the set {t0, r(t)}
reduces to

J = ‖q̇c‖ /
√
~ =

1√
~

[∫

q̇2c (t)dt

]1/2

=
√

A/m~ . (2.11)

Since the integrand does not depend on t0, the integration over the collective
coordinate t0 yields simply a factor τ (but in the case of correlation functions,
the integration restores time-translation symmetry). The integration over r(t)
yields a factor (det′M)−1/2, where det′M is the product of all non-vanishing
eigenvalues of M , which is also the determinant of M when restricted to the
subspace orthogonal to q̇c.

Normalization. To normalize the path integral, we compare it to its limit at
~ = 0 (a harmonic oscillator), which in the limit τ → ∞ reduces to e−ωτ/2.
For ~ → 0, the operator M tends toward the operator

M0(t1, t2) =
[

−md2t1 +mω2
]

δ(t1 − t2). (2.12)

In the comparison between the contribution of the instanton and the reference
path integral corresponding to the harmonic oscillator, one must recall that
the two path integrals differ by one Gaussian integration since in the instanton
contribution one Gaussian mode has been excluded. It is thus necessary to
divide the instanton contribution by the factor

∫ +∞

−∞
e−λ2/2 dλ = (2π)1/2.
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Dividing by a factor 2i, one then obtains the imaginary part of Z(τ/~) in the
form (2.1). Collecting all factors, one obtains [3]

ImZ(τ/~) ∼ 1

2i

[

det′(MM−1
0 )
]−1/2

√

A

m~

τ√
2π

e−ωτ/2 e−A/~,

and, finally,

ImE0 ∼ 1

2i

[

det′(MM−1
0 )
]−1/2

√

A~

2πm
e−A/~ . (2.13)

The result is finite and real since, as we have pointed out, M has one negative
eigenvalue.

2.3 The quartic anharmonic oscillator for negative cou-
pling

We now apply the preceding results to the example of the quartic anharmonic
potential in which the sign of the quartic term is changed from positive to
negative values. The corresponding Hamiltonian is

H = 1
2 p̂

2 + 1
2 q̂

2 + 1
4gq̂

4. (2.14)

We can infer the eigenvalues of H from a calculation of the partition function

Z(β) = tr e−βH =

∫

q(−β/2)=q(β/2)

[dq(t)] exp [−S(q)] , (2.15)

where S(q) is the Euclidean action,

S(q) =
∫ β/2

−β/2

[

1
2 q̇

2(t) + 1
2q

2(t) + 1
4gq

4(t)
]

dt . (2.16)

We have set ~ = 1 because after the change q(t) 7→ q(t)g−1/2, one verifies that
the parameter g plays here the role of ~.
A generalization of the arguments applicable to integrals over a finite num-

ber of variables indicates that the path integral (2.15) defines a function of g
that is analytic in the half-plane Re(g) > 0. In this domain, the integral is
dominated for g → 0 by the saddle point q(t) ≡ 0. Thus, it can be calculated
by expanding the integrand in powers of g and integrating the successive terms.
This generates a perturbative expansion of the partition function, from which,
in the limit β → ∞, an expansion of the ground state energy E0(g) can be
inferred.

Negative coupling. For all g < 0, the Hamiltonian is no longer bounded from
below. Therefore, the energy eigenvalues, considered as analytic functions of
g, have a singularity at g = 0 and the perturbation series is always divergent.
To understand how to define and evaluate E0(g) for g negative, we first study

a simple integral that illustrates some aspects of the problem.
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2.3.1 The simple quartic integral

The expansion of the integral

I(g) =
1√
2π

∫ +∞

−∞
e−(x

2/2+gx4/4) dx , (2.17)

yields, order by order in g, the number of Feynman diagrams contributing to
the partition function (2.15). For g positive and small, the integral is dominated
by the saddle point at the origin and thus

I(g) = 1 +O(g) . (2.18)

The function I(g) is analytic in a cut plane. To continue the integral analyti-
cally to g < 0, it is necessary to rotate the integration contour C as one changes
the phase of g, for example, like

C : Arg x = − 1
4Arg g (mod π) .

Then, Re(gx4) always remains positive. Depending on the orientation of the ro-
tation in the g plane, one obtains two different, complex conjugate, expressions
I±(g):

for g = ∓ |g|+ i0 : I±(g) =
1√
2π

∫

C±

e−(x
2/2+gx4/4) dx

with C± : Arg x = ∓π
4

(mod π) , (2.19)

For g → 0−, the two integrals are still dominated by the saddle point at the
origin since the contributions of the other saddle points,

x+ gx3 = 0 ⇒ x2 = −1/g , (2.20)

are of order
e−(x

2/2+gx4/4) ∼ e1/4g ≪ 1 . (2.21)

However, the discontinuity of I(g) across the cut is given by the difference
between the two integrals:

I+(g)− I−(g) = 2i Im I(g) =
1√
2π

∫

C+−C−

e−(x
2/2+gx4/4) dx . (2.22)

It corresponds to the contour C+ − C−, which, as Fig. 2.2 shows, can be
deformed into the sum of contours C1 and C2 that avoid the leading saddle
point but contain the non-trivial saddle points S1 and S2: x = ±1/

√−g. This
shows that the contributions of the saddle point at the origin cancel, and that
the integral is now dominated by the saddle points S1 and S2. Evaluating their
contributions, one then finds

Im I(g) ∼ 2−1/2 e1/4g . (2.23)
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Imx

C+ C
−

C2 C1

Rex
S2 S1

C
−

C+

FIG. 2.2 – The integration contours C+, C−
, C1 and C2.

As a consequence, for g negative and small, while the real part of the integral
is dominated by the perturbative expansion, the leading contributions to the
imaginary part come from the non-trivial saddle points and are exponentially
small.

2.3.2 Path integral

We now generalize this strategy to the path integral (2.15). Inspired by the
preceding example, we rotate the integration domain in functional q(t) space
while we change the phase of g to go from positive to negative values:

q(t) 7→ q(t) e−iθ,

where θ is independent of time. However, there is one major difference with
the case of a simple integral: the domain must satisfy Re

[

q̇2(t)
]

> 0, because
the kinetic term

∫

q̇2(t)dt determines the integration space in the path integral.
For g negative, the two conditions

Re
[

gq4(t)
]

> 0 , Re
[

q̇2(t)
]

> 0 , (2.24)

are satisfied if one integrates over a domain satisfying

Arg q(t) = −θ (mod π) , π/8 < θ < π/4 or − π/4 < θ < −π/8 . (2.25)

For g → 0, the two path integrals corresponding to the two analytic continua-
tions are here also dominated by the saddle point at the origin

q(t) = 0 ,
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but in the difference, this contribution cancels.
The contribution of the saddle points corresponding to the constant functions

q2(t) = −1/g ,

is of the order of eβ/4g and is thus negligible for β → ∞.
We then look for saddle points that are non-trivial solutions of the Euclidean

equation of motion for g < 0:

−q̈(t) + q(t) + gq3(t) = 0 (2.26)

with
q(−β/2) = q(β/2). (2.27)

We are only interested in instanton-type solutions, whose action remains finite
when β → +∞.

2.3.3 Instantons

The solutions of equation (2.26) with the periodic condition (2.27) have an
interpretation as describing a classical periodic motion, in real time, in the
potential

−V (q) = − 1
2q

2 − 1
4gq

4. (2.28)

It is clear that the equation of motion has solutions that correspond to oscilla-
tions around the minima of−V , q = ±

√

−1/g. In the infinite β limit, the finite
action condition implies that the equation (2.26) can be integrated once as

1
2 q̇

2 − 1
2q

2 − 1
4gq

4 = 0 .

The classical solutions then are (t0 is an integration constant)

qc(t) = ±
(

−2

g

)1/2
1

cosh(t− t0)
. (2.29)

The corresponding value of the classical action is

S(qc) = − 4

3g
+O

(

e−β /g
)

. (2.30)

Since the Euclidean action is time-translation invariant, the classical solution
depends on one arbitrary parameter t0, which for β finite, varies in an interval
of size β. We thus find two families of degenerate saddle points that depend
on one parameter.

Leading order contribution. The operator second functional derivative of the
action is given by

M(t1, t2) =
δ2S

δqc(t1)δqc(t2)
=

[

−
(

d

dt1

)2

+ 1 + 3gq2c (t1)

]

δ(t1 − t2). (2.31)
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One verifies that the function q̇c(t) is square integrable and, therefore, M has
a zero mode corresponding to the eigenvector q̇c.
Taking into account the two families of saddle points, the zero mode and

collecting all factors, one obtains

Im tr e−βH ∼ 2

2i

[

det′MM−1
0

]−1/2
J

β√
2π

e−β/2 e4/3g, (2.32)

where J is the Jacobian (2.11). Moreover, it is easy to calculate the eigenvalues
of M analytically because M is a Hamiltonian with a Bargmann–Wigner-type
potential. One finally obtains

ImE0(g) =
4√
2π

e4/3g√−g [1 +O(g)] , g → 0− . (2.33)



Chapter 3

Metastable Vacua in Quantum Field Theory

With this chapter, we begin a semi-classical study of barrier penetration in
quantum field theory [11], generalizing the methods explained in quantum me-
chanics. We have shown that in quantum mechanics barrier penetration is
associated with classical motion in imaginary time; thus, we consider here also
quantum field theory in its Euclidean formulation.
From the point of view of field integrals, in the semi-classical limit barrier

penetration is also related to finite action solutions (instantons) of the Eu-
clidean classical field equations. We first try to characterize such solutions. We
then explain how to evaluate the instanton contributions at leading order, the
main new problem arising from UV divergences.
In this chapter, we discuss the decay of metastable states in the case of scalar

field theories [12, 13]. We have argued that the lifetime of metastable states
is related to the imaginary part of the ‘ground state’ energy. In the case of
the vacuum amplitude, we find that the instanton contribution is proportional
to the space–time volume. Dividing by the volume we, therefore, obtain the
probability per unit time and unit volume of a metastable pseudo-vacuum to
decay.
For later purpose, we also calculate the imaginary part not only of the vac-

uum amplitude but also of correlation functions.
We first consider general scalar field theories. As an application, we mention

the decay of the false vacuum in a cosmological context.
We then discuss a scalar field theory with a φ4 interaction, generalization

of the quartic anharmonic oscillator, in the dimensions in which it is super-
renormalizable, that is, two and three dimensions.

3.1 General scalar field theory: Instanton contributions

We consider a d-dimensional field theory for a scalar field φ, with a local Eu-
clidean action of the form

S(φ) =
∫

ddx
[

1
2 (∂µφ(x))

2
+ g−1V

(

φ(x)
√
g
)

]

, (3.1)

at tree level, in which the potential V (φ) has a relative minimum at φ = 0,
where

V (φ) = 1
2m

2φ2 +O(φ3), m > 0 ,
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(an example is displayed in figure 3.1) and the parameter g plays a role equiv-
alent to ~.
Assuming that at some initial time the quantum mechanical state corre-

sponds to fields concentrated around the unstable minimum of the potential,
the ‘false’ vacuum, we want, for example, to evaluate in the semi-classical limit
g → 0 the probability for the false vacuum to decay into the true vacuum of
the theory.

V (f)

f0 f

FIG. 3.1 – Potential with a metastable minimum.

The quantum partition function at zero temperature, or vacuum amplitude,
is given by the field integral

Z =

∫

[dφ(x)] exp[−S(φ)], (3.2)

where the field integral is normalized with respect to the free or Gaussian theory
with the action

S0(φ) =
1
2

∫

ddx
[

(∂µφ(x))
2 +m2φ2(x)

]

, (3.3)

in such a way that Z(g = 0) = 1.
More generally, we consider also the effect of barrier penetration on cor-

relation functions. The complete n-point correlation function can be written
as

〈φ(x1)φ(x2) . . . φ(xn)〉 = Z(n)(x1, . . . , xn)/Z , (3.4)

where Z is the partition function (or vacuum amplitude) (3.2) and

Z(n)(x1, . . . , xn) =

∫

[dφ(x)] φ(x1)φ(x2) . . . φ(xn) exp[−S(φ)]. (3.5)

Again, we normalize field integrals with respect to the vacuum amplitude of
the free field theory (3.3).
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3.1.1 The instanton solution

The calculation of the barrier penetration amplitude involves the determination
of instanton (finite action) solutions of the Euclidean field equation and, at
leading order, a Gaussian integration around the instanton. The classical field
equation reads

−∇2
xφ(x) +

1√
g
V ′(φ(x)

√
g
)

= 0 . (3.6)

A theorem establishes, under mild assumptions, that spherically symmetric so-
lutions give the minimal action (and thus the leading contribution). Therefore,
one looks for such solutions, setting

r = |x− x0| , f(r) =
√
gφc(x) . (3.7)

The classical equation of motion reduces to

d2f

dr2
+
d− 1

r

df

dr
= V ′(f). (3.8)

Interpreting r as a time, one notes that the equation describes the motion of a
particle in a potential −V (f) and submitted to a viscous damping force. Since
one looks for finite action solutions, one imposes the boundary condition

f(r) → 0 for r → ∞ . (3.9)

Moreover, a solution that goes to 0 goes exponentially as e−mr.
The leading solution is even and is determined by its value at the origin f(0).

We call f0 the non-trivial zero of the potential (figure 3.1). If we choose for
f(0) a value for which the potential −V (f(0)) is too large, −V (f) will remain
positive until r becomes very large. When r is large, the damping force is small
so that energy is almost conserved and the particle will overshoot. By contrast,
if f(0) is too close to f0, the particle will lose too much energy and, therefore,
undershoot, the asymptotic value f(r) then corresponding to the maximum
f+, 0 < f+ < f0, of V (f). Thus, somewhere in between, we expect to find a
value f(0), which corresponds to a solution which goes to zero at infinity and,
therefore, has a finite action.
The virial theorem (see below) implies

S(φc) =
1

d

∫

(∂µφc(x))
2 ddx > 0 (3.10)

and, thus, the corresponding action is positive. We set

S(φc) = A/g (3.11)

with

A =
1

d

∫

(∂µf)
2 ddx =

1

d
Sd

∫ ∞

0

rd−1f ′2(r)dr , (3.12)
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where Sd, the area of the d-dimensional sphere, is

Sd = 2πd/2/Γ(d/2). (3.13)

The virial theorem. If φc(x) has a finite action so does φc(λx). In the action
(3.1) evaluated at φc(λx), we then change variables λx 7→ x. The action then
becomes

S(λ, φc) = λ2−d 1
2

∫

ddx
(

∂µφ(x)
)2

+ λ−d

∫

ddx g−1V
(

φ(x)
√
g
)

.

The action being stationary for φc(x), is stationary for λ = 1. Expressing that
the derivative with respect to λ vanishes for λ = 1, we obtain

(d− 2)12

∫

ddx
(

∂µφ(x)
)2

+ d

∫

ddx g−1V
(

φ(x)
√
g
)

= 0 . (3.14)

3.1.2 The problem of the Gaussian integration

In simple situations, to calculate the contribution of a saddle point one expands
at the saddle point. This amounts here to setting

φ(x) = φc(x) + χ(x),

and expanding the action in powers of χ. A leading order, one finds, for example
for the partition function or vacuum amplitude,

Z = e−A/g

∫

[dχ(x)] exp

[

− 1
2

∫

ddxddx′ χ(x)M(x, x′)χ(x′)

]

,

where

M(x, x′) =
δ2S(φ)

δφ(x)δφ(x′)

∣

∣

∣

∣

φ=φc

=
[

−∇2
x + V ′′(f(r)

)]

δ(d)(x− x′). (3.15)

The Gaussian integration around the saddle point thus involves the determinant
of the operator M with kernel M(x, x′).
However, differentiating the equation of motion (3.6) with respect to xµ, one

discovers that the d functions ∂µφc = ∂µf(r)/
√
g are eigenvectors of M with

vanishing eigenvalue:

−∇2
x∂µφc(x) + V ′′(f(r)

)

∂µφc(x) = 0 ⇔ M ∂µφc = 0 . (3.16)

This property is not surprising. Due to translation symmetry, one finds a family
of degenerate saddle points φc(x − x0) depending on d parameters x0µ. It is
then necessary to sum over all saddle points, and thus to take the collective
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coordinates x0µ as d of our integration variables, over which one eventually
integrates exactly [14]. To change variables, φ(x) 7→ (x0, {χn}), we set

φ(x) = φc(x− x0) +
∑

n=1

χnψn(x− x0),

where the functions ψn(x) are normalized eigenfunctions of M orthogonal to
all ∂µφc(x).
As shown in section 4.6, the change of variables generates a Jacobian, which

can be expressed in terms of determinant of d× d matrices as [10]

Jtr.(φ) =
1

Jtr.
det

∫

ddx∂µφc(x)∂νφ(x), (3.17)

with

Jtr. = det1/2
∫

ddx∂µφc(x)∂νφc(x).

At leading order φ(x) = φc(x), and the invariance under space rotations implies

∫

ddx∂µφc(x)∂νφ(x) =
δµν
d

∫

ddx [∇xφc(x)]
2 .

Thus, using equations (3.11, 3.12), one finds

Jtr.(φc) = Jtr. =

[

1

d

∫

ddx
(

∇xφc(x)
)2
]d/2

=

(

A

g

)d/2

. (3.18)

Moreover, the result must be multiplied by a factor (2π)−1/2 for each collective
coordinate, since to each one is associated one Gaussian integration in the
normalization integral.
The integration over the variables χn then generates the determinant of M

in the subspace orthogonal to the zero eigenvalue sector.

3.1.3 The determinant: A few remarks

After division by the Gaussian normalization integral (3.3), we have to evaluate
the limit of the ratio of determinants

Ω = det′ MM−1
0 ≡ lim

ε→0+
ε−d detK(ε) (3.19)

with
K(ε) = (M0 + ε)

−1
(M+ ε)

and
〈x |M0|x′〉 =

(

−∇2
x +m2

)

δd)(x− x′).

The ε contribution is, of course, only relevant in the zero-mode sector. The
operator K can also be written as

K(ε) = 1−Ξ(ε)
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with

Ξ(ε) = − (M0 + ε)−1 V(r),

where we have set

V(r) = V ′′(f(r)
)

−m2.

The operator Ξ is equivalent to a Hermitian operator since

Ξ = (M0 + ε)
−1/2

Q (M0 + ε)
1/2

with

Q = − (M0 + ε)
−1/2 V(r) (M0 + ε)

−1/2
.

Thus, it has a real spectrum.

Traces. Denoting by ξn the eigenvalues of Ξ, and introducing the perturba-
tive propagator

(

−∇2
x +m2 + ε

)

G2(x− x′) = δ(d)(x− x′) ⇒ G2(x) =
1

(2π)d

∫

ddp eipx

p2 +m2 + ε
,

we can calculate the successive traces of Ξ.
First,

trΞ =
∑

n=0

ξn = −G2(0)

∫

ddxV(r).

This trace is divergent for d ≥ 2, a problem we will have to solve by introducing
the corresponding renormalization (see section 3.1.5). Next,

trΞ2 =
∑

n=0

ξ2n =

∫

ddxddx′ V(r)G2
2(x− x′)V(r′),

which is UV finite for d < 4. For d > 4, this confirms that the spectrum is
discrete and accumulates to 0. For d = 4, an additional renormalization is
required but the other traces are finite.
Successive traces of Ξ are related to successive one-loop diagrams.

Eigenvalues. The corresponding spectral equation

Ξψn = ξnψn

can be rewritten as

[

−∇2
x +m2 + ε+ V(r)/ξn

]

ψn(x) = 0 . (3.20)

In the limit ε→ 0, Ξ has one eigenvalue ξ0 larger than 1 (because ∂µφc vanishes
once) and the eigenvalue ξ1 = 1 d times degenerate (corresponding to ∂µφc).
All other eigenvalues are smaller than 1.
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Then, Ω can be written formally as the product

Ω = lim
ε→0+

(1− ξ0)

(

1− ξ1
ε

)d
∏

n>1

(1− ξn).

The equation (3.20) has the form of a Schrödinger equation. Thus, the relevant
ratio (1 − ξ1)/ε can be evaluated by first order perturbation theory, (1 − ξ1)
inducing a variation of the potential,−ε being the corresponding energy shift
and ∂µφc the unperturbed eigenfunction. One finds

1− ξ1
ε

∼
[∫ ∞

0

f ′2(r)rd−1dr

] [∫ ∞

0

V(r)f ′2(r)rd−1dr

]−1

≡ R .

Thus,

Ω = (1 − ξ0)R
d
∏

n>1

(1− ξn).

Also, using ln det = tr ln, formally

Ω = Rd exp

[

−
∑

k=1

1

k

(

trΞk(0)− d
)

]

. (3.21)

In fact, to ensure the convergence of the sum, one must first separate all eigen-
values with |ξn − 1| ≥ 1 and factorize their contributions.

3.1.4 The unrenormalized instanton contribution at leading order

The instanton contribution yields the discontinuity of the function across its
cut. The imaginary part is obtained by dividing by a factor 2i. The imaginary
part of the ground state energy density is then obtained from equation (3.28).
At leading order, the real part of the partition function is 1. Collecting all
factors, one finds

Im E ≡ − Im ln(ReZ + i ImZ)/volume ∼
g→0

− 1

2i

(

A

2π

)d/2

(Ω)
−1/2 e−A/g

gd/2
.

Moreover, δ2S/(δφc)2 has one and only one negative eigenvalue so that the
final result is real, as expected.
For correlation functions, in expression (3.5) one can replace at leading order

the field φ(x) by φc(x) in the product
∏n

i=1 φ(xi). One finds

ImZ(n)(x1, . . . , xn) =
1

2i

(

A

2π

)d/2

(Ω)−1/2 e−A/g

g(d+n)/2
Fn(x1, . . . , xn) (3.22)

with

Fn(x1, . . . , xn) =

∫

ddx0

n
∏

i=1

f(xi − x0). (3.23)

Note one important feature of this expression: each component of x0 generates a
factor g−1/2. While for the vacuum amplitude the integration over x0 generates
a factor proportional to the volume, for non-trivial correlation functions the
integration restores translation invariance.
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3.1.5 Renormalization

As we have already noticed, the determinant of the operator M is actually UV
divergent for d > 1 and we have to deal with this new problem. To define
properly the field theory in two and three dimensions, one first introduces a
UV cut-off, for example by modifying the action in the form

SΛ(φ) =

∫

ddx
[

1
2φ(x)

(

−∇2 +∇4/Λ2 + · · ·
)

φ(x) + g−1V
(

φ(x)
√
g
)]

.

For large cut-off Λ the modification of the instanton contribution is negligible.
One then adds to the classical action counter-terms that cancel the divergences
in the perturbative expansion, order by order in a loop expansion, that is, here
an expansion in powers of g. Finally, one takes the infinite cut-off limit. The
renormalized action has the form

Sr(φ) =
1

g
SΛ(φ

√
g) + δS1(φ

√
g) + · · ·+ gL−1δSL(φ

√
g) + · · · .

At leading order, only the one-loop counter-terms contribute in the instanton
calculation. To render correlation functions finite, one has to subtract to the
regularized action the divergent part of the one-loop term:

δS1(φ
√
g) = −1

2

(

tr ln
δ2S
δφδφ

− tr ln
δ2S0

δφδφ

)

div.

.

When evaluated for φ = φc, this contribution exactly cancels the divergence
in the determinant coming from the Gaussian integration around the saddle
point. At one-loop order, one can choose

δS1(φ
√
g) = − 1

2G2(0)

∫

ddx
[

V ′′(φ(x)
√
g
)

−m2
]

,

where G2(x) is the regularized perturbative propagator:

G2(x) =
1

(2π)d

∫

ddp eipx

m2 + p2 + p4/Λ2 + · · · . (3.24)

Evaluating the contribution of the counter-term for φ(x) = φc(x), one verifies
that it exactly cancels tr Ξ in the expression (3.21). Thus, formally, in the
infinite cut-off limit

Ωren. = Rd exp

[

d−
∑

k=2

1

k

(

trΞk(0)− d
)

]

, (3.25)

an expression that is indeed finite order by order for d < 4 (but one must
still separate the eigenvalues of Ξ such that |1 − ξ| ≥ 1 to render the series
convergent).
The property that counter-terms determined from the perturbative expan-

sion render also the instanton contributions finite, can be proved to all orders.
The general argument relies, in particular, on the property that the classical
solutions are smooth functions.
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3.2 Instanton contributions and generating functional

We now discuss the contributions of instantons to correlation functions. A
generating functional of the functions Z(n) (equation (3.4)) is given by

Z(J) =

∫

[dφ(x)] exp

[

−S(φ) +
∫

ddxJ(x)φ(x)

]

. (3.26)

At leading order in the instanton contribution, the generating functional Z(J)
is the sum of a formally real expansion in powers of g and an imaginary, expo-
nentially small for g → 0, instanton contribution of order e−A/g.
We thus write the functional Z(J) in the form

Z(J) = Z0(J) + εZ1(J),

where Z0 is the perturbative contribution, Z1 the leading instanton contribu-
tion and the parameter ε is introduced here only as a book-keeping device to
indicate that we expand in the instanton contribution.
The generating functional of connected correlation functions is given by

W(J) = lnZ(J) = lnZ0(J) + εZ1(J)/Z0(J) +O
(

ε2
)

. (3.27)

Expanding
W(J) = W0(J) + εW1(J) +O(ε2),

we find
W1(J) = Z1(J)/Z0(J).

We set (ι = 0, 1)

W (n)
ι (x1, . . . , xn) =

(

n
∏

i=1

δ

δJ(xi)

)

Wι(J)

∣

∣

∣

∣

∣

J=0

.

To simplify the explicit expressions, we now assume that S(φ) = S(−φ) and
thus, that correlation functions with n odd vanish, but the method is general.
Then, one finds, for example,

W1(J = 0) = Z1(0)/Z0(0), (3.28)

W
(2)
1 (x1, x2) = Z

(2)
1 (x1, x2)/Z0(0)− Z

(2)
0 (x1, x2)Z1(0)/Z2

0 (0), (3.29)

and

W
(4)
1 (x1, x2, x3, x4)

= Z
(4)
1 (x1, x2, x3, x4)/Z0(0)− Z

(2)
0 (x1, x2)Z

(2)
1 (x3, x4)/Z2

0 (0) + 5 terms

− Z
(4)
0 (x1, x2, x3, x4)Z1(0)/Z2

0 (0)

+ 2Z
(2)
0 (x1, x2)Z

(2)
0 (x3, x4)Z1(0)/Z3

0 (0) + 2 terms . (3.30)
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At leading order, Z
(n)
1 is proportional to (φc)

n. Since the classical field φc

is of order 1/
√
g (equation (3.7)), Z

(n)
1 of order g−n/2Z1(0) (see, e.g., equa-

tion (3.55)). This implies Z
(4)
1 ≫ Z

(2)
1 ≫ Z1 and thus, at leading order, the

disconnected contributions are subleading.
Finally, from the well-known property of the Legendre transformation, if we

expand the vertex (1PI) functional in the form

Γ(φ) = Γ0(φ) + εΓ1(φ) +O
(

ε2
)

, (3.31)

where Γ0(φ) is the Legendre transform of W0(J), then

Γ1(φ) = −W1

(

J0(φ)
)

with

J0(φ) =
δΓ0

δφ
.

Setting

Γ(n)(x1, . . . , xn) =

(

n
∏

i=1

δ

δφ(xi)

)

Γ(φ)

∣

∣

∣

∣

∣

φ=0

,

one finds, for example,

Γ
(2)
1 (x1, x2) = −

∫

ddy1 d
dy2 Γ

(2)
0 (x1, y1)W

(2)
1 (y1, y2)Γ

(2)
0 (x2, y2) (3.32)

and

Γ
(4)
1 (x) = −

∫

(

4
∏

i=1

ddyiΓ
(2)
0 (xi, yi)

)

W
(4)
1 (y)

−
∫

ddy ddz Γ
(2)
0 (x1, y)W

(2)
1 (y, z)Γ

(4)
0 (z, x2, x3, x4) + 3 terms. (3.33)

One finds that the 1-line reducible parts are subleading.

3.3 Cosmology: The decay of the false vacuum

In preceding sections we have determined the probability for a ‘false vacuum’
of a quantum field theory to decay through barrier penetration. While the
calculation has direct applications for large order behaviour (see chapter 7) and
issues in statistical physics, it has also been speculated that such a phenomenon
could be linked to the dynamics of the early universe [12].
When the universe started to cool down, some symmetries started to be

spontaneously broken. Some region might have been trapped in the wrong
phase. The false vacuum must eventually decay in the true vacuum, but if the
process is slow enough, it might have occurred at a much later time when the
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universe was already cool. This is the kind of physical speculation that we here
have in mind.
According to the previous discussion, if the universe is in the wrong vacuum,

there is some probability at each point in space for some bubble of true vacuum
to be created, and if the bubble is large enough, it becomes favourable for it to
expand, absorbing eventually the whole space. To discuss what happens once
a bubble has been created, it is useful to consider first the analogous problem
in ordinary quantum mechanics.

Quantum mechanics. In the language of particle physics, a semi-classical
description of the decay process would be the following: a particle is sitting in
the well of the potential corresponding to the unstable minimum. At a given
time, it makes a quantum jump and reappears outside of the barrier, at the
point where the potential has the same value as in the bottom of the well,
with zero velocity (by energy conservation). Then its further trajectory can be
entirely described by classical mechanics.

Field theory. We apply the same ideas to the field theoretical model we dis-
cuss in this chapter. At time zero the system makes quantum jump. According
to the previous discussion, the value of the field at time zero is then (with the
choice x0µ = 0)

φ(t = 0,x) = φc(xd = 0,x), (x = x1, . . . , xd−1) , (3.34)

and its time derivative vanishes,

∂tφ(t = 0,x) = 0 . (3.35)

At a later time φ(t,x) then obeys the real-time field equation,

[

∇2
i − ∂2t

]

φ(t,x) =
1√
g
V ′(
√

gφ). (3.36)

The first equation (3.34) tells us that the same function describes the form of
the instanton in Euclidean space, and its shape in ordinary (d− 1) space when
it materializes. We now consider the continuation in real time of the solution
of the Euclidean field equation φc[(x

2 − t2)1/2] (since φc(r) is an even function,
the sign in front of the square root is irrelevant). It satisfies the conditions
(3.34,3.35) and obviously obeys the field equation (3.36). It is, therefore, the
solution of our problem for positive times.
Since the size of the bubble is given by microphysics, the interior of the

bubble corresponds to small values of r on a macroscopic scale,

0 ≤ x2 − t2 = r2 ≪ 1 .

Therefore, after a short time the bubble starts expanding at almost the speed
of light.
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3.4 The φ4 field theory for negative coupling

We now consider the concrete example of the φ4 field theory which, in the tree
approximation, corresponds to the action

S(φ) =
∫

ddx

[

1

2
(∂µφ(x))

2 +
1

2
m2φ2(x) +

1

4!
gm4−dφ4(x)

]

, (3.37)

m being the mass and g the dimensionless coupling constant (the power of m
which appears in front of the interaction term φ4 takes care of the dimension).

The complete n-point correlation function has the functional representation
(3.4). We normalize all field integrals with respect to the vacuum amplitude
at g = 0, to avoid introducing a non-trivial g-dependence through the normal-
ization. Thus, Z(g = 0) = 1.

Instantons. As functions of g, correlation functions are analytic functions
with a cut on the real negative axis. We assume that we start from positive
values of g and proceed by analytic continuation to define the field integral for g
negative. The imaginary part of correlation functions is given by the difference
between the continuations above and below the negative g-axis. For g small,
only non-trivial saddle points contribute to the imaginary part. Therefore,
we look for non-trivial finite action solutions of the Euclidean field equations,
that is, instanton configurations, and then calculate the corresponding contri-
butions.

3.4.1 Instantons: Classical solutions and classical action

The instanton solutions. The field equation corresponding to the action (3.37)
is

(

−∇2 +m2
)

φc(x) +
1
6gm

4−dφ3c(x) = 0 . (3.38)

We set (g is negative),

φc(x) = (−6/g)1/2md/2−1f(mx) . (3.39)

In terms of f , the classical action (3.37) reads

S(f) = −6

g

∫

ddx
[

1
2 (∂µf)

2
+ 1

2f
2 − 1

4f
4
]

. (3.40)

The function f(x) then satisfies the parameter-free equation

(

−∇2 + 1
)

f(x)− f3(x) = 0 . (3.41)

It can be shown that the solution with the smallest action is spherically sym-
metric. Therefore, we choose an arbitrary origin x0 and set

r = |x− x0| . (3.42)
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A function f(x) that depends only on the radial variable r satisfies the differ-
ential equation,

[

−
(

d

dr

)2

− d− 1

r

d

dr
+ 1

]

f(r) − f3(r) = 0 . (3.43)

The equation describes the motion of a particle in a potential −V (f):

V (f) = 1
2f

2 − 1
4f

4, (3.44)

submitted in addition to a viscous damping force (for d > 1).
Since we look for finite action solutions we impose the boundary condition

f(r) → 0 for r → ∞ . (3.45)

Equation (3.43) shows that if f(r) goes to zero at infinity it goes exponentially.
The equation has solutions even in r, which are thus determined by the value
of f at the origin. For a generic value of f(0), the corresponding solution
tends at infinity toward one of the minima f = ±1 of the potential −V (f).
The condition (3.45) is satisfied only for a discrete set of initial values of f(0).
Moreover, it can be shown that the minimal action solution corresponds to
the function for which |f(0)| is minimal in the set, and which vanishes only at
infinity.
One then finds a double family of d-parameter solutions obtained from a

particular one by ±f(|x− x0|).
Solutions and classical action. Since g is dimensionless, the corresponding

classical action has the form

S(φc) ≡ S(f) = −A/g , (3.46)

in which A is a pure number. Scaling arguments lead to the relations

A =
6

d

∫

[∂µf(x)]
2
ddx =

3

2

∫

f4(x)ddx =
6

4− d

∫

f2(x)ddx , (3.47)

which show that A is positive. We also note that these relations can be true
only for d < 4 and thus the dimension 4 is singular (see chapter 5).
The relevant solutions of equation (3.43) are analytic even functions with

singularities closest to the origin poles on the imaginary axis with residues
±i

√
2. For r → ∞, they converge exponentially toward solutions of the linear

equation obtained by omitting the f3 term. They are determined by the value
at the origin. We give here the numerical results for d = 1, 2, 3 [15]:

d = 1 : f(0) =
√
2 = 1.4142135623 . . . , A = 8 . (3.48)

d = 2 : f(0) = 2.20620086465074607(1), A = 35.10268957367896(1). (3.49)

d = 3 : f(0) = 4.3373876799769943(1), A = 113.38350781527714(1). (3.50)
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Asymptotically for r → ∞,

f(r) = F

√

2

π
r1−d/2Kd/2−1(r) + o(e−3r)

whereKν is a modified Bessel function of the second kind normalized such that

Kν(r) ∼
r→∞

√

π

2r
e−r .

More precisely, the relative error is proportional to −f2/8.
One finds







for d = 1 , F = 2
√
2 = 2.8284271246 . . . ,

for d = 2 , F = 3.518062198024(1) ,
for d = 3 , F = 2.712808360940(1) .

For what follows, it is convenient to introduce the notation

In =

∫ ∞

0

rd−1fn(r)dr . (3.51)

Then,

I2 =
4− d

4
I4 ,

∫ ∞

0

rd−1f ′2(r)dr =
d

4
I4 , A =

3

2
SdI4 , (3.52)

where Sd is given in equation (3.13).
For d = 1, this yields

I2 = 2 , I4 = 8
3 = 2.666666 . . . , I6 = 64

15 = 4.266666 . . . . (3.53)

For d = 2,

I2 = 1.862255520490447(1), I4 = 3.724511040980895(1),

I6 = 11.3127606567358398(1) .

For d = 3,

I2 = 1.5037954778249919(1), I4 = 6.0151819112999679(1),

I6 = 52.5106549691091922(1).

3.4.2 The result at leading order

The result at leading order involves the operators

M(x, x′) =
[

−∇2
x +m2 + 1

2gm
4−dφ2c(x)

]

δ(d)(x− x′), (3.54)

=
[

−∇2
x +m2 − 3m2f2(mr)

]

δ(d)(x− x′)

and
M0(x, x

′) =
(

−∇2
x +m2

)

δ(d)(x− x′).



44 Chapitre 3 : Metastable Vacua in Quantum Field Theory

Adapting the results of section 3.1.4 to the φ4 example, one then finds

ImZ(n)(x1, . . . , xn) =
1

2i

(

A

2π

)d/2

(Ω)
−1/2 eA/g

(−g)(d+n)/2
Fn(x1, . . . , xn),

(3.55)
with

Fn(x1, . . . , xn) = md+n(d−2)/26n/2
∫

ddx0

n
∏

i=1

f
(

m(xi − x0)
)

, (3.56)

and

Ω =
(

det′ MM−1
0

)∣

∣

m=1
= lim

ε→0+
ε−d det

[

(M+ ε) (M0 + ε)
−1
]∣

∣

∣

m=1
. (3.57)

Wave function arguments of the kind used for the Schrödinger equation show
directly that ∂µφc is not the ground state ofM. One state exists with a negative
eigenvalue so that the final result is real as expected.

Discussion. A few comments concerning expression (3.22) are here in order.
We have obtained a result for the complete correlation functions, improperly
normalized, for convenience, with respect to the free field theory. We notice,
however, that, because φc(x) is proportional to 1/

√−g, the imaginary part
of the n-point function increases with n for g small. It follows then from
the discussion of section 3.2 that at leading order the correlation functions
normalized with respect to the partition function corresponding to the complete
action (3.37) have the same behaviour as those renormalized with respect to
the free field theory.

Moreover, for the same reason, in the complete n-point function, the imag-
inary part coming from disconnected parts is subleading by at least a power
of g. For the connected n-point correlation function, one thus finds at leading
order

ImW (n) ∼ ImZ(n),

a result that is consistent with the observation that the explicit expression
(3.22) is indeed connected. To pass from connected correlation functions to
1PI functions, one has first to subtract the reducible contributions which in-
volve functions with a smaller number of arguments and which are, therefore,
negligible at leading order, and then to amputate the remaining part. Again for
the same reason only the perturbative part of the propagator matters; there-
fore, to amputate expression (3.22) one has to simply multiply it by the product
of the inverse free propagators corresponding to each external line. Introducing
the Fourier transform of f ,

f̃(p) =

∫

ddx e−ipx f(r),
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and writing the n-point 1PI function Γ̃(n) in momentum space representation,
one obtains

Im Γ̃(n)(p1, . . . , pn) ∼ − 1

2i

(

A

2π

)d/2

(Ω)−1/2 eA/g

(−g)(d+n)/2
md−n(d/2+1)

× 6n/2
n
∏

i=1

f̃(pi/m)
(

p2i +m2
)

. (3.58)

At leading order, the structure of the imaginary part of the n-point function is
particularly simple in momentum representation; in particular it depends only
on the square of the momenta and not of their scalar products.

3.4.3 The determinant

We specialize the expressions of section 3.1.3 to the φ4 theory and m = 1. We
have to calculate the determinant (3.57) that we can rewrite as

Ω = lim
ε→0+

ε−d det [1−Ξ(ε)]

with
Ξ(ε) = 3(−∇2

x + 1 + ε)−1f2.

The operator Ξ is equivalent to a positive Hermitian operator since f2 is pos-
itive.
To renormalize, we choose a counter-term such that the inverse two-point

function in the Fourier representation satisfies

Γ̃(2)(p = 0) = m2.

The one-loop counter-term is then

δS1 = − 1
4G2(0)gm

4−d

∫

ddxφ2(x). (3.59)

It has the effect of cancelling trΞ. We can then directly use the expression
(3.25):

Ωren. = Rd exp

[

d−
∑

k=2

1

k

(

trΞk(0)− d
)

]

,

where one must still separate the eigenvalues of Ξ such that |1 − ξ| ≥ 1. For
example, here the first contributing trace is

trΞ2 =
∑

n=0

ξ2n = 9

∫

ddxddx′f2(r)G2
2(x− x′)f2(r′).

The spectral equation then reads

Ξψ = ξψ ⇔
(

−∇2
x + 1− 3f2(x)/ξ

)

ψ(x) = 0 . (3.60)
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The largest eigenvalue is ξ0 = 3 which corresponds to ψ(x) = f(r). The next
eigenvalue ξ1 = 1 is d times degenerate and corresponds to the zero-modes
ψµ(x) = xµf

′(r)/r. All other eigenvalues n > 1 satisfy 0 < ξn < 1 and, thus,
|1 − ξ| < 1. It is thus necessary to factorize only the contribution of the first
eigenvalue and expand in modified traces

tr′ Ξk = trΞk − 3k − d . (3.61)

Zero-mode sector. In the zero-mode sector, ξ − 1 is of order ε and can be
considered as inducing a perturbation to the initial potential. Thus, the energy
shift can be calculated by first order perturbation theory:

ε

∫

rd−1f ′2(r)dr = 3(1− ξ1)

∫

rd−1f2(x)f ′2(x)dr .

After an integration by parts, one obtains

R ≡ lim
ε→0

1− ξ1
ε

=
dI4

4(I6 − I4)
. (3.62)

Then,

Ωren. = −2Rd exp

(

d+ 3−
∑

k=2

1

k
tr′ Ξk

)

. (3.63)

Dimension 1. For d = 1, where no one-loop renormalization is required, one
finds

R = (1− ξ1)/ε =
5
12 (3.64)

and
Ω = lim

ε→0+
ε−1 det [1−Ξ(ε)] = − 1

12 .
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Chapter 4

Metastable Vacua: The O(N) Generalization

We now generalize the study of section 3.4 to the situation where φ is an N -
component field and the action is O(N) invariant. We work out in some detail
the example of the (φ2(x))2 field theory corresponding to the tree level action

S(φ) =
∫

ddx

[

1

2
(∂µφ(x))

2 +
1

2
m2φ2(x) +

1

4!
gm4−d

(

φ2(x)
)2
]

, (4.1)

generalizing the action (3.37), but part of the discussion applies to more general
scalar field theories. In particular, we calculate the exact form of the Jacobian
when the instanton solution breaks both d dimensional space translations and
the O(N) internal symmetry.

4.1 Instantons and determinant

The corresponding field equations are

(

−∇2 +m2
)

φα(x) +
1
6gm

4−dφ2(x)φα(x) = 0 . (4.2)

Using the Sobolev inequalities, one can show that the minimal action solution
is

φc(x) = uφc(r), φc(r) = (−6/g)1/2md/2−1f(mr), (4.3)

where the vector u of components uα is a constant unit vector, u2 = 1, and f
the solution of equation (3.43).
The second derivative of the action is then

Mαβ(x, x
′) =

[(

−∇2
x +m2 −m2f2(mr)

)

δαβ − 2m2f2(mr)uαuβ
]

δ(d)(x − x′).
(4.4)

At x, x′ fixed, the matrixMαβ has two operator eigenvalues, one corresponding
to the eigenvector uα:

ML(x, x
′) =

(

−∇2
x +m2 − 3m2f2(mr)

)

δ(d)(x− x′), (4.5)
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which is the operator for N = 1 and the second one, corresponding to the
vector space orthogonal to u, thus (N − 1) times degenerate:

MT(x, x
′) =

(

−∇2
x +m2 −m2f2(mr)

)

δ(d)(x− x′). (4.6)

This second operator has f(mr) for eigenvector with eigenvalue zero, corre-
sponding to the breaking of the O(N) symmetry. This implies the introduction
of (N − 1) collective coordinates related to the coset space SO(N)/SO(N − 1),
which is isomorphic to the sphere SN−1.

4.2 The Jacobian at leading order

We parametrize the field in the form

φ(x) = φL(x+ x0)u+ φT(x+ x0),

where
u · φT(x) = 0 .

We then introduce the quantity

J(φ) = det gij

(∫

ddxφc(x)φL(x)

)N−d−1

det Iµν

with

Iµν(φ) =

∫

ddxddx′ [∂µφc(x) · ∂νφ(x)φc(x′)φL(x′)

−∂µφc(x)∂νφc(x′)φT(x) · φT(x
′)] . (4.7)

The Jacobian is then (the derivation is postponed to section 4.6):

J = J(φ)/J1/2(φc).

Leading order calculation. At leading order, φL = φc and φT = 0 and the
Jacobian factorizes:

J = J1/2(φc) = Jtr.Jrot,

where

Jtr. = det1/2
∫

ddx∂µφc(x) · ∂νφc(x) (4.8a)

Jrot = det1/2g

[∫

ddxφ2
c(x)

](N−1)/2

, (4.8b)

where the matrix g represents the metric tensor gij on the sphere. Denoting
by θi a set of N − 1 parameters parametrizing the sphere, then

gij =
∂u

∂θi
· ∂u
∂θj
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and
∫ ∏

i dθi det
1/2 g is the covariant surface element of SN−1.

Since φc(x) depends only on the radial coordinate r, the matrix

Jµν
tr. ≡

∫

ddx∂µφc(x) · ∂νφc(x) =
1

d
δµν

∫

ddx
(

∂µφc(x)
)2
, (4.9)

and thus

Jtr. = det1/2 Jµν
tr. =

[

1

d

∫

ddx
(

∂µφc(x)
)2
]d/2

=

(

A

g

)d/2

.

Finally, for Jrot one needs

∫

ddxφ2
c(x) = − 6

m2g

∫

ddx f2(x) = − 6

m2g
SdI2 =

d− 4

gm2
A . (4.10)

Thus,

Jrot = det1/2g

(

(d− 4)A

m2g

)(N−1)/2

.

Moreover, one must again divide by a factor
√
2π for each collective coordinate,

coming from the corresponding Gaussian integrations in the normalization in-
tegral. At leading order, this yields the factor

det1/2gm1−N (d− 4)(N−1)/2

(

A

2πg

)(d+N−1)/2

.

4.3 The instanton contribution at leading order

ToML(x, x
′) is associated KL, whose spectrum has already been discussed and

to MT(x, x
′) for m = 1

KT = 1−ΞT

with
ΞT = (−∇2

x + 1 + ε)−1f2 = ΞL/3 .

The leading eigenvalue of ΞT is 1 and corresponds to the zero-mode.
Finally, the relevant determinant is

ΩT = lim
ε→0+

1

ε
det
[

(M0 + ε)
−1

(MT + ε)
]∣

∣

∣

m=1
.

In the zero-mode sector, the relation between the eigenvalue ξT0 and ε is again
given by first order perturbation theory:

RT ≡ lim
ε→0

1− ξT 0

ε
=
I2
I4
. (4.11)
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Thus, before renormalization,

ΩT = RT exp

[

−
∑

k=1

1

k

(

trΞk
L/3

k − 1
)

]

.

The determinant has to be renormalized. We choose a counter-term such that
the inverse two-point function satisfies

Γ̃(2)(p = 0) = m2.

The counter-term is then

δS1 = − 1
12 (N + 2)G2(0)gm

4−d

∫

ddxφ2(x). (4.12)

It has the effect of cancelling trΞ and this leads to the cancellation of trΞT.
Thus,

[ΩT]ren. = RT exp

[

1−
∑

k=2

1

k

(

trΞk
L/3

k − 1
)

]

. (4.13)

The leading order result is then multiplied by the factor [ΩT]
−(N−1)/2
ren. .

The integration over the sphere SN−1. In the case of the partition function,
the integration over collective coordinates yields the product of the surface of
the SN−1 sphere, 2πN/2/Γ(N/2), and the space volume. Collecting all factors,
one obtains

2πN/2

Γ(N/2)

(

(d− 4)A

2πg [ΩT]ren.

)(N−1)/2

. (4.14)

In the case of correlation functions, the integration over the sphere has the effect
of averaging the product (φc)α1

. . . (φc)αn and thus the factor uα1
uα2

. . . uαn .
Setting

Tα1α2...αn = 〈uα1
uα2

. . . uαn〉SN−1
, (4.15)

one finds for the two-point function, for example,

Tαβ =
1

N
δαβ . (4.16)

Similarly, for the four-point function

Tαβγδ =
1

N(N + 2)
(δαβδγδ + δαγδβδ + δαδδγβ) . (4.17)

By convention
T = 〈1〉SN−1

= 1 .

Dimension 1. The case d = 1 corresponds to the O(N) symmetric anhar-
monic oscillator with the Hamiltonian

H = 1
2p

2 + 1
2m

2q2 + 1
4!g(q

2)2. (4.18)

Then, J = −24/g,
det′(1−ΞT) =

1
3 ,

and (equation (3.53))
RT = 3

4 ⇒ ΩT = 1
4 .
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4.4 Jacobian and continuous symmetries: Ordinary inte-
grals

We now justify the form of the Jacobian used in chapter 4. We begin the
analysis with ordinary integrals, the generalization to path and field integrals
being then simple.

4.4.1 Ordinary integrals

We want to evaluate the integral

I =

∫

RN

dNx e−S(x)/g, (4.19)

in the limit g → 0+, where the function S is analytic and symmetric under the
transformations of a continuous Lie group G, subgroup of O(N), acting on x.
We assume that, in this limit, the function S is minimum at non G-symmetric
saddle points xc that are left invariant by the transformations of a subgroup
H of G. The solution xc then depends on p parameters τ i parametrizing
the coset (homogeneous) space G/H . The second derivative of S thus has
a multiple zero eigenvalue corresponding to the p eigenvectors ∂xc/∂τ

i (zero
modes). To apply the steepest descent method, one must take the parameters
τ i as collective coordinates and restrict the steepest descent calculation to the
remaining N − p variables. The problem is then to calculate the Jacobian of
the corresponding change of variables.

Collective coordinates and Jacobian. We introduce an orthonormal basis eα,
α = 1, . . . , N , such that the vectors eα with α > p span the subspace orthogonal
to all vectors ∂xc/∂τ

i:

eα · ∂xc

∂τ i
= 0 ∀α > p . (4.20)

We then change variables x 7→ {τ i, ra}, setting

x = xc(τ ) +
∑

a>p

raea(τ ). (4.21)

The corresponding Jacobian is

J = det

(

∂x

∂τ i
,
∂x

∂ra

)

= det

(

∂x

∂τ i
, ea(τ )

)

, a > p ,

where x(τ ) is a substitute for the expansion (4.21). We then expand the vectors
∂x/∂τ i on the basis {eα}:

∂x

∂τ i
=
∑

α

eα(τ )
∂x(τ )

∂τ i
· eα(τ ) . (4.22)

Inside the determinant, the components with α > p can be omitted and the
Jacobian becomes (a > p)

J = det





∑

j≤p

ej
∂x(τ )

∂τ i
· ej , ea



 = det
∂x(τ )

∂τ i
· ej , (4.23)
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because the basis is orthonormal.
The expansion (4.22) can be also applied to xc, where it reduces to

∂xc

∂τ i
=
∑

j≤p

ej(τ )
∂xc(τ )

∂τ i
· ej(τ )

and, introducing the p× p matrix

Rij(τ ) =
∂xc(τ )

∂τ i
· ej(τ ),

conversely,

ei(τ ) =
∑

j

R−1
ij (τ )

∂xc(τ )

∂τ j
.

It follows that

J = det
∂x(τ )

∂τ i
· ∂xc(τ )

∂τ j
detR−1(τ ) = det

∂x(τ )

∂τ i
· ∂xc(τ )

∂τ j

/

det
∂xc(τ )

∂τ i
· ej .

Finally,

det2
∂xc(τ )

∂τ i
· ej = det

(

∑

k

∂xc(τ )

∂τ i
· ek

∂xc(τ )

∂τ j
· ek
)

= det

(

∂xc(τ )

∂τ i
· ∂xc(τ )

∂τ j

)

,

because the projector

Παβ =
∑

i≤p

eαi e
β
i , (4.24)

is the identity in the subspace spanned by the vectors ∂xαc /∂τ
i.

It is convenient to introduce the metric tensor on the manifold G/H , which
can be written as

gij =
∂xc

∂τ i
· ∂xc

∂τ j
. (4.25)

One can then rewrite the integration measure Jacobian as [9]

J dNx δ(p)(xT)
∏

i

dτ i (4.26)

with

J = (det gij)
−1/2 det

(

∂x

∂τ i
· ∂xc

∂τ j

)

, (4.27)

where xT is the projection of x − xc on the basis ei≤p. The form (4.26, 4.27)
is the easiest to generalize to functional integrals.
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The Faddeev–Popov method. An alternative method is to impose the condi-
tions

Ci(τ ) ≡
∂xc(τ )

∂τ i
·
(

x− xc(τ )
)

= 0 ,

which determine τ as a function of x. This can be achieved by introducing
inside the integral (4.19) the identity

∫

∏

i

dτ i δ
(

Ci(τ )
)

det

(

∂Cj

∂τk

)

= 1 .

Inside the integral we can then solve for x in terms of τ by parametrizing x as
in expression (4.21). We note that (a > p)

ea(τ ) ·
∂xc(τ )

∂τ i
= 0 ⇒ ∂ea(τ )

∂τ j
· ∂xc(τ )

∂τ i
+ ea(τ ) ·

∂2xc(τ )

∂τ i∂τ j
= 0 .

Thus,
∂Ci

∂τ j
= −∂xc(τ )

∂τ i
· ∂x(τ )
∂τ j

.

Finally,
∏

i

δ
(

Ci(τ )
)

= δ(p)(xT) det
−1 ∂xc(τ )

∂τ i
· ej

and the preceding result in the form (4.26) is recovered.
Note that nowhere the explicit group structure has been used. Assuming

τ = 0 belongs to the manifold G/H , there exists, therefore, elements g of G
such that

xc(τ ) = gxc(0). (4.28)

which leads to additional simplifications since the explicit dependence in τ can
then be eliminated.

Application to the O(N) Jacobian. We consider the special example of a
function S that depends only on x2. We assume that S has non-trivial saddle
points of the form

xc = u|xc| with u2 = 1 .

The groups G and H are thus O(N) and O(N − 1), respectively. The coset
space O(N)/O(N − 1) is isomorphic to the sphere SN−1.
Then,

∂xc

∂τ i
= |xc|

∂u

∂τ i

and x can be written as
x = xc(τ ) + ru ,

since u is the only vector orthogonal to all vectors ∂xc/∂τ
i. The projector

(4.24) then becomes
Παβ = δαβ − uαuβ , (4.29)
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and gij (defined in equation (4.25)) is the metric on the sphere SN−1 in the τ i

parametrization. The expression (4.27) reduces to

J = det

[

(|xc|+ r)

(

∂u

∂τ i
· ∂u
∂τ j

)]

= det [gij (|xc|+ r)] = (|xc|+ r)
N−1

det gij .

Thus the Jacobian of the change of variables x 7→ {τ i, r} becomes

J = (|xc|+ r)
N−1

det1/2 gij(τ ).

We use invariance under rotation of the x integral to rotate the ei basis to a
fixed basis with u 7→ (1, 0...) in terms of an orthonormal basis containing u,
calling x1 the component on u. We can then integrate over u and obtain the
surface σN of the SN−1 sphere. We call x1 the sum |xc|+ r and find

I = σN

∫

dNxxN−1
1 δ(N−1)(xT) e

−S(x)/g = σN

∫ ∞

0

dx1 x
N−1
1 e−S(x1)/g,

which is the result that one obtains by introducing immediately radial and
angular variables.

4.5 Jacobian with O(N) symmetry: Path integrals

The generalization of expressions (4.26, 4.27) is simple (in particular, because
no specific group properties have been used). We denote by q(t), t ∈ R, the
N -component path over which one integrates. Scalar products of vectors are
then replaced by space integrals and sums. The Jacobian can be written as [9]

J = detJ(q)/ det1/2 J(qc) , (4.30)

where qc is the instanton solution and J(q) the matrix with elements

Jij(q) =

∫

dt
∂q

∂τ i
· ∂qc

∂τ j
. (4.31)

4.5.1 Space translations

We first assume that q(t) has one component and the instanton solution breaks
only the symmetry of the action under space translations. Then, the function
J(q) in (4.31) reduces to the expression

J(q) =

∫

dt q̇(t)q̇c(t),

derived directly (equation (1.29)). Moreover, one integrates over all paths q(t)
with the constraint

∫

dt
(

q(t)− qc(t)
)

q̇c(t) = 0 .

Setting
q(t) = qc(t) + r(t),

after an integration by parts one obtains (assuming the boundary terms cancel)

J(q) = J(qc)

[

1− 1

J(qc)

∫

dt q̈c(t)r(t)

]

.
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4.5.2 Path integrals: Space translations and O(N) internal rotations

We now consider a path integral where the integrand is both invariant under
space translations and internal O(N) group transformations. Under rather
general conditions, one can show that the instanton solution with minimal
action can be factorized in the form

qc(t) = u qc(t+ t0), (4.32)

where u is a time-independent unit vector: u2 = 1, a form that breaks both
time translation and O(N) invariance. The subgroup that leaves the vector
u invariant is O(N − 1). As a variant with the notation of section 4.4.1, we
denote by t0 the collective coordinate corresponding to time translations and
we restrict the notation τ ≡ {τ i}, 1 ≤ i ≤ N − 1, to the collective coordinates
parametrizing the sphere O(N)/O(N − 1) ≡ SN−1. We further assume that
qc(t) → 0 when |t| → ∞.
We then set

q(t) = qL(t+ t0)u(τ ) + qT(t+ t0), (4.33)

where
u · qT(t) = 0 . (4.34)

We now express the conditions that the zero-modes should be omitted. Trans-
lation invariance yields

∫

dt q̇c(t)
(

qL(t)− qc(t)
)

=

∫

dt q̇c(t)qL(t) = 0 . (4.35)

The second condition coming from O(N) transformations reads

∫

dt qc(t)
∂u

∂τ i
· qT(t) = 0 .

The (N−1) vectors ∂u/∂τi span the space orthogonal to u and, thus, the latter
condition is equivalent to

∫

dt qc(t)qT(t) = 0 . (4.36)

More explicit form of the Jacobian. The matrix J(q) introduced in equation
(4.30) can now be written as

J(q) =

(

A B
C D

)

, (4.37)

where A,B,C,D are submatrices with elements

Aij =

∫

dt
∂q(t)

∂τ i
· ∂qc(t)

∂τ j
, Bj =

∫

dt
∂q(t)

∂t0
· ∂qc(t)

∂τ j
,

Ci =

∫

dt
∂q(t)

∂τ i
· ∂qc(t)

∂t0
, D =

∫

dt
∂q(t)

∂t0
· ∂qc(t)

∂t0
,
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where the derivatives with respect to t0 and τ i refer to the parametrization
(4.33).
Introducing the parametrization (4.33), we obtain

∂q

∂t0
= q̇(t) = q̇L(t+ t0)u+ q̇T(t+ t0),

∂q

∂τ i
= qL(t+ t0)

∂u

∂τ i
+
∂qT(t+ t0)

∂τ i
,

as well as

∂qc

∂t0
= q̇c(t) = uq̇c(t+ t0),

∂qc

∂τ i
=
∂u

∂τ i
qc(t+ t0).

We now calculate the various contributions relevant for expression (4.37). First,

D =

∫

dt q̇(t) · q̇c(t) =

∫

dt q̇L(t)q̇c(t).

Also,

Bi =

∫

dt q̇(t) · ∂qc(t)

∂τ i
=
∂u

∂τ i
·
∫

dt q̇T(t)qc(t),

Ci =

∫

dt q̇c(t) ·
∂q(t)

∂τ i
= u ·

∫

dt q̇c(t)
∂qT(t)

∂τ i
.

Integrating by parts, we obtain

Bi = − ∂u

∂τ i
·
∫

dtqT(t)q̇c(t).

From equation (4.34), we derive

u · ∂qT(t)

∂τ i
+
∂u

∂τ i
· qT(t) = 0 .

Thus,

Ci = − ∂u

∂τ i
·
∫

dt q̇c(t)qT(t).

Finally,

Aij =

∫

dt
∂q(t)

∂τ i
· ∂qc(t)

∂τ j
=

∂u

dτ j
·
∫

dt qc(t)

(

∂u

dτ i
qL(t) +

∂qT

∂τ i

)

= gij

∫

dt qL(t)qc(t) +
∂u

dτ j
·
∫

dt qc(t)
∂qT

∂τ i
, (4.38)

where we have introduced the metric (4.25) on SN−1:

gij =
∂u

dτ i
· ∂u
dτ j

.
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Then, differentiating the condition (4.36) with respect to τi, we find that the
second term in (4.38) vanishes. The matrix A reduces to

Aij = gij

∫

dt qL(t)qc(t).

We use the general identity

det

(

A B
C D

)

= detA det
(

D−CA−1B
)

, (4.39)

valid for all submatrices. We introduce the inverse gij of the metric tensor:
∑

k gikg
kj = δji . We need

CA−1B =

(∫

dt qL(t)qc(t)

)−1

×
∫

dt dt′
∑

i,j

∂u

∂τ i
· qT(t)q̇c(t)g

ij ∂u

∂τ j
· qT(t

′)q̇c(t
′).

The expression involves the symmetric matrix

Παβ =
∑

i,j

∂uα
∂τ i

gij
∂uβ
∂τ j

,

which is given by equation (4.29):

Παβ = δαβ − uαuβ .

It follows

CA−1B =

(∫

dt qL(t)qc(t)

)−1 ∫

dt dt′ qc(t)qc(t
′)q̇T(t) · q̇T(t

′).

Also

detA = det gij

[∫

dt qL(t)qc(t)

]N−1

.

We conclude

detJ(q) = det gij

[∫

dtq(t) · qc(t)

]N−2 ∫

dt dt′ [q̇(t) · q̇c(t)q(t
′) · qc(t

′)

− q̇c(t)q̇c(t
′)qT(t) · qT(t

′)] . (4.40)

The complete Jacobian then is

J = (det gij)
1/2

[∫

dtq2
c(t)

](1−N)/2 [∫

dt q̇2
c(t)

]−1/2 [∫

dtq(t) · qc(t)

]N−2

×
∫

dt dt′ [q̇(t) · q̇c(t)q(t
′) · qc(t

′)− q̇c(t)q̇c(t
′)qT(t) · qT(t

′)] . (4.41)
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Using the first condition (4.35), one can also rewrite this expression as [9]

J = (det gij)
1/2

[∫

dtq2
c(t)

](1−N)/2 [∫

dt q̇2
c(t)

]−1/2 [∫

dtq(t) · qc(t)

]N−2

×
∫

dt dt′ [q̇(t) · q̇c(t)q(t
′) · qc(t

′) + q̇c(t) · qc(t
′)q(t) · q̇(t′)] . (4.42)

In the case of the partition function, we can integrate explicitly over t0 and τ i

after a translation and an O(N) rotation and find a factor βσN , where β is the
time interval and σN the surface of SN−1.
Note that this expression factorizes into a Jacobian for translations and a

Jacobian for O(N) rotations only at leading order.

4.6 Jacobian with O(N) symmetry: Field integrals

We denote by φ(x), x ∈ R
d, d > 1, the N -component field over which one

integrates. Scalar products of vectors are then replaced by space integrals and
sums. The Jacobian then reads [10]

J = detJ(φ)/ (detJ(φc))
1/2 , (4.43)

where J(φ) is the matrix with elements

Jij(φ) =

∫

ddx
∂φ

∂τ i
· ∂φc

∂τ j
.

Space translations. If the scalar field φ(x) has only one component, the
instanton solution only breaks the space translation symmetry of the action and
vanishes at large distance. Then, the Jacobian (4.43) involves the determinant
of a d× d matrix J with elements

Jµν(φ) =

∫

ddx∂µφc(x)∂νφ(x). (4.44)

Space translations and O(N) rotations. We now assume that we integrate
over anN -component field φ(x), x ∈ R

d with an integrand that has both space-
translation and O(N) rotation invariance. We also assume that the solution
breaks both symmetries of the action and can be written as

φc(x) = uφc(x+ x0),

where the unit vector u and x0 are constants (this is in general the case for the
minimal action solution). We choose as collective coordinates the unit vector
u, in some parametrization τ i, 1 ≤ i < N , and the d-component vector x0.
The calculation follows the same lines as in the path integral example.
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We parametrize the field in the form

φ(x) = φL(x+ x0)u+ φT(x+ x0),

where
u · φT(x) = 0

and (zero-mode conditions)

∫

ddx∂µφc(x) [φL(x)− φc(x)] = 0 , (4.45a)

∫

ddxφc(x)φT(x) = 0 . (4.45b)

The calculation of the determinant involves the d × d matrix D (immediate
generalization of expression (4.44)) with elements

Dµν(φ) =

∫

ddx∂µφc(x) · ∂νφ(x) =
∫

ddx∂µφc(x)∂νφL(x). (4.46)

Then,

∂µφc(x) = u ∂µφc(x),
∂φc(x)

∂τ i
=
∂u

∂τ i
φc(x).

We infer

Biµ =

∫

ddx∂µφ(x) ·
∂φc(x)

∂τ i
=
∂u

∂τ i
·
∫

ddxφc(x)∂µφT(x)

= − ∂u

∂τ i
·
∫

ddx∂µφc(x)φT(x)

Cµi =

∫

ddx∂µφc(x) ·
∂φ(x)

∂τ i
= u ·

∫

ddx∂µφc(x)
∂φT(x)

∂τ i

= − ∂u

∂τ i
·
∫

ddx∂µφc(x)φT(x).

Finally, as in the path integral example,

Aij =

∫

ddx
∂φc(x)

∂τ i
· ∂φ(x)
∂τ j

= gij

∫

ddxφc(x)φL(x),

where the derivative of the condition (4.45b) has been used.
As before, we use the rule (4.39) of expanding determinant by blocks, iden-

tifying one block with gij . We need the d× d matrix

Eµν =
(

CA−1B
)

µν

=

(∫

ddxφc(x)φL(x)

)−1 ∫

ddxddx′ ∂µφc(x)∂νφc(x
′)φT(x) · φT(x

′).
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We finally obtain [10]

J(φ) = det gij

(∫

ddxφc(x)φL(x)

)N−d−1

det Iµν

with

Iµν(φ) =

∫

ddxddx′ [∂µφc(x) · ∂νφ(x)φc(x′)φL(x′)

−∂µφc(x)∂νφc(x′)φT(x) · φT(x
′)] . (4.47)

The Jacobian follows:
J = J(φ)/J1/2(φc).

In the case of the partition function, the integration over collective coordinates
yields the product of the surface of the SN−1 sphere and the space (or space-
time) volume.



Chapter 5

The φ4 Field Theory in Dimension 4

For the φ4 field theory four dimensions is special because the theory is just
renormalizable. Moreover, one discovers that only the massless field equations
have instanton solutions. This leads to a set of new problems which we now
examine. We first consider the massless theory which is simpler, although it
has some subtle IR problems. A technical advantage is that the classical theory
is conformal invariant and the instanton solution can be found explicitly. Note
that the barrier penetration is somewhat peculiar since it is not generated by
the potential but only by the kinetic term of the action.
We explain the leading order calculation of instanton contribution for the

one-component φ4 theory, but the extension to the O(N) symmetric model is
simple, and explicit expressions can be found in the literature [16],[17].
The Euclidean action of the massless theory φ4 theory in the tree approxi-

mation can be written as

S(φ) =
∫

d4x
[

1
2

(

∇xφ(x)
)2

+ 1
4gφ

4(x)
]

, (5.1)

and the corresponding field equation reads:

−∇2φ(x) + gφ3(x) = 0 . (5.2)

Note the unconventional normalization of the coupling constant. To return to
the usual convention one has to substitute g 7→ g/6.
We know that the solution of minimal action is spherically symmetric, thus

we set (g is negative)

φ(x) =
1√−g f(r) (5.3)

with
r = |x− x0| . (5.4)

We then obtain the non-linear differential equation

−
[

(

d

dr

)2

+
3

r

d

dr

]

f(r) = f3(r). (5.5)
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We now use the scale invariance of the classical theory (the theory is actually
conformal invariant). If φ(x) is the solution to the equation, then ψ(x) is also
a solution with

φ(x) = λψ(λx). (5.6)

This suggests the changes

f(r) = e−t h(t), r = et , (5.7)

which transform equation (5.5) into

ḧ(t) = h(t)− h3(t). (5.8)

We recognize the equation of motion of the anharmonic oscillator that we have
solved in chapter 1:

hc(t) = ±
√
2

cosh(t− t0)
. (5.9)

The solution φc(x) of equation (5.2) then is

f(r) = ± 2
√
2λ

1 + λ2r2
, (5.10a)

⇒ φc(x) = ± 1√−g
2
√
2λ

1 + λ2 (x− x0)
2 , (5.10b)

where we have defined λ = e−t0 . The value of corresponding classical action is

S(φc) = −A/g , A = 8π2/3 . (5.11)

With the standard normalization of g one finds A = 16π2.
Because the classical theory is scale invariant, the instanton solution now

depends on a scale parameter λ, in addition to the four translation parameters
x0µ. Therefore, to calculate the instanton contribution we must introduce a
fifth collective coordinates.

5.1 Instanton contributions at leading order

The general strategy. The second derivativeM(x, x′) of the action at the saddle
point is

M(x, x′) =
δ2S

δφc(x)δφc(x′)
=

[

−∇2 − 24λ2

(1 + λ2x2)2

]

δ(4)(x− x′). (5.12)

To find the eigenvalues the operator of M, one has to solve a 4-dimensional
Schrödinger equation with a spherically symmetric potential. We immediately
note at this stage two serious problems. The operator M has, as expected, five
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eigenvectors, ∂µφc(x) and (d/dλ)φc(x), with eigenvalue zero, but the last of
these eigenvectors is not normalizable with the natural measure of the problem,

∫ [

d

dλ
φc(x)

]2

d4x = ∞ . (5.13)

This is an IR problem which arises because the theory is massless.
Another difficulty comes from the mass counter-term which has to be added

to the action. It has the form:

1
2δm

2
0

∫

d4xφ2c(x) = ∞ . (5.14)

The integral of φ2c(x) is also IR divergent, and this IR divergence is expected
to cancel with an IR divergence of detM. Thus we need in general some kind
of IR regularization. In the particular case of the dimensional regularization,
this problem is postponed to two-loop order.
These problems will be solved in several steps. First we realize that we do

not need the eigenvalues of M but only the determinant det′ MM−1
0 (equa-

tions (3.57)). We can multiply M and M0 by the same operator. A specific
choice that makes full use of the scale invariance of the classical theory, then
transforms M into an operator whose eigenvalues can be calculated analyti-
cally. Because the calculations are somewhat tedious, we indicate here only
the various steps, without giving all details.

The transformation. We extend the transformation (5.7) to arbitrary fields,
setting:

φ(x) = e−t h(t, n̂) with t = ln |x|, n̂n =
xµ

|x| . (5.15)

The classical action then becomes

S(φ) = S̃(h) =
∫

dt dΩ

[

1

2

(

ḣ− h
)2

+ hL2h+
1

4
gh4
]

. (5.16)

The symbol
∫

dΩ means integration over the angular variables n̂, and L2 is
the square of the angular momentum operator with eigenvalues l(l + 2) and
degeneracy (l + 1)2. The expression (5.16) can be rewritten

S̃(h) =
∫

dt dΩ

{

1

2

[

ḣ2 + h
(

L2 + 1
)

h
]

+
1

4
gh4
}

. (5.17)

The integral of ḣh vanishes due to boundary conditions.
With the parametrization

λ = e−t0 , x0 = et0 v ,

the classical solution (5.10b) transforms into hc(t):

√−ghc(t) =
±2

√
2

e(t−t0) −2v · n+ e−(t−t0)(v2 + 1)
. (5.18)
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We note that in these new variables translations take a complicated form, unlike
dilatation which simply corresponds to a translation of the variable t.
The second derivative of the classical action at the saddle point now takes

the form (for t0 = x0µ = 0)

M =
δ2S
δhcδhc

= −
(

d

dt

)2

+ L2 + 1− 6

cosh2 t
. (5.19)

The natural measure associated to this Hamiltonian problem is
∫

dt dΩ ,

which in the original language means
∫

d4x

x2
.

This measure is not translation invariant, and thus the Jacobian resulting from
the introduction of collective coordinates, and the determinant depend individ-
ually on x0µ. However, the product of the corresponding contributions to the
final result should not, thus we perform the calculation for x0µ = 0.

5.1.1 The Jacobian

With the new measure dφc /dλ is normalizable:

J1 =

[

∫

d4x

x2

(

d

dλ
φc(x)

)2
]1/2

, (5.20)

=

[

16π2

(−g)

∫ ∞

0

rdr

(

1− λ2r2
)2

(1 + λ2r2)4

]1/2

. (5.21)

This leads to a first Jacobian factor:

J1 =
1

λ

√

8

3

π√−g . (5.22)

The second Jacobian J2 comes from the collective coordinates x0µ:

J2 =

[

1

4

∫

d4x

x2

4
∑

µ=1

(∂µφc)
2

]2

, (5.23)

=
1

g2

[

16π2

∫ ∞

0

r3drλ6

(1 + λ2r2)
4

]2

=
λ4

g2
× 16

9
π4. (5.24)

The complete Jacobian J is thus

J = J1J2 =
λ3

(−g)5/2
π5 × 32

√
2

9
√
3
. (5.25)



Instanton contributions at leading order 65

5.1.2 The determinant

For each value l of the angular momentum, the operator M is the form of a
Hamiltonian corresponding to a Bargman potential:

Ml = −
(

d

dt

)2

+ (1 + l)
2 − 6

cosh2 t
(5.26)

and the determinant can be calculated explicitly. One finds

det (Ml + ε) (M0l + ε)
−1

=

√

ε+ (l + 1)2 − 1
√

ε+ (l + 1)2 + 2

√

ε+ (l + 1)2 − 2
√

ε+ (l + 1)2 + 1]
, (5.27)

in which M0l is the operator of the corresponding free theory. As we know,
this determinant is UV divergent and we have to renormalize it. However, let
us first calculate formally the unrenormalized determinant:

l ≥ 2 : detMlM
−1
0l =

l(l − 1)

(l + 2)(l + 3)
, (5.28)

l = 1 : lim
ε→0

1

ε
det (M1 + ε) (M01 + ε)

−1
=

1

48
, (5.29)

l = 0 : lim
ε→0

1

ε
det (Ml=0 + ε) (M0l=0 + ε)

−1
= − 1

12
. (5.30)

As expected the determinant is negative and we obtain the formal expression

det′ MM−1
0 = − 1

12
×
(

1

48

)4

×
∞
∏

l=2

[

l(l − 1)

(l + 2)(l + 3)

](l+1)2

. (5.31)

Renormalization. In these variables, the UV divergences appear as diver-
gences of the infinite product on l. We thus use in an intermediate step a
maximum value L of l as a cut-off. From the general analysis one knows the
UV divergent part of ln detM is completely contained in the two first terms
of the expansion in powers of φ2c . Therefore, one can proceed in the following
way: the determinant of the operator M(s),

M(s) = −
(

d

dt

)2

− s(s+ 1)

cosh2 t
, (5.32)

is exactly known

det [M(s) + z] [M0 + z]−1 =
Γ(1 +

√
z)Γ(

√
z)

Γ(1 + s+
√
z)Γ(

√
z − s)

. (5.33)

Setting:
s(s+ 1) = 6γ , (5.34)
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one expands ln detM(s) in powers of γ. One deduces from this expansion, the
expansion up to second order of ln detM in powers of the potential −6/ cosh2 t
in the representation (5.27). One then subtracts these two terms from ln detM
as obtained from the representation (5.31). One then verifies that indeed the
large L limit of the subtracted quantity:

{

det′ MM−1
0

}−1/2

ren
= lim

L→+∞
i2
√
3× (48)

2
L
∏

l=2

[

(l + 2)(l + 3)

(l − 1)

](l+1)2/2 L
∏

l=0

e−3(l+1)

×
L
∏

l=0

e−18(l+1)2

[ ∞
∑

k=l+1

1

k2
− 1

l + 1
− 1

2(l+ 1)2

]

, (5.35)

is finite. We set:
{

det′ MM−1
0

}−1/2

ren
= iC1 . (5.36)

Taking into account the Jacobians, the factor (2π)−1/2 for each collective mode,
the factor (2i)−1 and a factor two for the two saddle points, we get a first factor
C2 of the form

C2 =
λ3

(−g)5/2
× π5 × 32

√
2

9
√
3

× C1

(2π)5/2
, (5.37)

which we write as

C2 = C3λ
3/(−g)5/2 . (5.38)

We then have to add to the classical action the two terms we have subtracted
above from ln detM. However, we can now write them in the normal space
representation, regularized as we have regularized the perturbative correlation
functions, and take into account the one-loop counter-terms. The first term in
the expansion in powers of φ2c is exactly cancelled by the mass counter-term,
as we have already discussed. The second term in the expansion, which is the
one-loop contribution to the four-point function, is logarithmically divergent.
In the next section we calculate explicitly the finite difference between this
term and the coupling constant counter-term which cancels the divergence.

5.2 Coupling constant renormalization

The terms we want to calculate involve the renormalized four-point function.
We have to choose a renormalization scheme: we assume, therefore, that we
have renormalized the field theory by minimal subtraction after dimensional
regularization. The renormalization constants can be easily calculated. Notice
the different normalization of the coupling constant. The contribution δS2

which we have to add to the action, coming from the subtraction of ln detM
and the one-loop coupling renormalization constant, is

δS2 =
9

4

Nd

ε
g2
∫

φ4c(x)d
4x− 9

4
g2 tr

[

φ2c
(

−∇2
)−1

φ2c
(

−∇2
)−1
]

, (5.39)
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in which Nd is the usual loop factor,

Nd = 2(4π)−d/2/Γ(d/2) . (5.40)

and d = 4− ε. The expression can be rewritten as

δS2 = −9

4
g2
∫

d4xd4y
d4p

(2π)4
eip(x−y) φ2c(x)φ

2
c(y)

× lim
d→4

(∫

ddq

(2π)d
µε

q2(p− q)2
− Nd

ε

)

, (5.41)

in which µ is the renormalization scale. The integral over q yields

∫

ddq

(2π)d
1

q2(p− q)2
− Nd

ε
=

1

8π2

(

1

2
− ln p

)

+O(ε) . (5.42)

We also introduce the Fourier transform of the function f2(r) (f(r) is given by
equation (5.10a)):

v(p) =
1

(2π)4

∫

d4x
8 eipx

(1 + x2)2
. (5.43)

The solution φc(x) depends on the scale λ. Rescaling the variables x, y, and
p, we can then write the total expression more explicitly:

δS2 = −9π2

2

∫

d4p v2(p)
[

1
2 − ln (λp/µ)

]

. (5.44)

From the definition of v(p) we deduce after a short calculation:

∫

d4p v2(p) =
2

(3π2)
, (5.45)

∫

d4p ln p v2(p) =
2

3π2

(

ln 2 + γ +
1

6

)

, (5.46)

in which γ is Euler’s constant: γ = −ψ(1) = 0.577215 . . . . We then obtain

δS2 = 3 lnλ/µ− lnC4 (5.47)

with
lnC4 = 1− 3 ln 2− 3γ . (5.48)

We note that the right hand side of equation (5.47) now depends on the scale
parameter λ. The interpretation of this result is the following: the coupling
constant renormalization breaks the scale invariance of the classical theory,
and, therefore, the scale parameter λ remains in the expression. Moreover,
the term proportional to lnλ together with the contribution from the classical
action can be rewritten as

8π2

3g
− 3 lnλ/µ =

8π2

3g(λ)
+O (g) , (5.49)
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in which g(λ) is the effective coupling at the scale λ, solution of the renormal-
ization group equation,

dg(λ)

d lnλ
= β [g(λ)] , (5.50)

with

β(g) =
9

8π2
g2 +O

(

g3
)

. (5.51)

This property is expected. The renormalization of the perturbative expansion
renders the instanton contribution, before integration over dilatation, finite.
Consequently this contribution should satisfy a renormalization group equation,
and the coupling constant g can be present only in the combination g(λ), since
λ fixes the scale in the calculation.

5.3 The imaginary part of the n-point function

We can now write the complete contribution to the imaginary part of the n-
point function,

ImZ(n)(x1, . . . , xn)

∼
g→0−

C5

∫

d4x0

∫ ∞

0

dλ

λ
λ4

n
∏

i=1

2
√
2λ

1 + λ2 (xi − x0)
2

e8π
2/3g(λ)

(−g)(n+5)/2
, (5.52)

where we have set:
C5 = C3C4 .

To calculate the Fourier transform of the expression (5.52), we introduce

u(p) = 2
√
2

∫

eipx
d4x

1 + x2
. (5.53)

Then, after factorizing the δ-function of momentum conservation,

Im Z̃(n)(p1, . . . , pn) ∼
C5

(−g)(n+5)/2

∫ ∞

0

dλλ3−3n e8π
2/3g(λ)

n
∏

i=1

u(pi/λ). (5.54)

We can express the result in terms of 1PI correlation functions Γ̃(n)t(p1, . . . , pn):

Im Γ̃(n)(p1, . . . , pn) ∼
C5

(−g)(n+5)/2

∫ ∞

0

dλ

λ
λ4−n e8π

2/3g(λ)
n
∏

i=1

(p2i /λ
2)u (pi/λ).

(5.55)
One verifies that p2u(p) goes to a constant for |p| small.
In contrast to the super-renormalizable case, because the theory is only renor-

malizable the final result is not totally explicit, but involves instead a final in-
tegration over dilatations whose convergence is not obvious. Let us now discuss
this point.
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The small instanton contribution. Small instantons correspond to λ large.
For λ large, the integral behaves like

∫ ∞
dλλ3−n e8π

2/3g(λ), (5.56)

and, therefore, we have to examine the behaviour of g(λ) for λ large. From
equation (5.51) we see that the theory is UV asymptotically free because for
g negative, that is, g(λ) goes to zero for λ large. Thus perturbation theory is
applicable and we can use the approximation (5.49). The argument remains
true even if we take g slightly complex. Thus the integral has the form

∫ ∞
dλλ−n. (5.57)

We see that the power behaviour in λ depends explicitly on the coefficient of
the g2 term of the β(g)-function. Without the contribution coming from g(λ),
the integral (5.57) would have a UV divergence similar to the one found in
the corresponding perturbative expansion. Due to the additional power of λ
coming from g(λ), only the vacuum amplitude is divergent.

The convergence of the dilatation integral is thus better than expected: in-
deed the renormalization constants are now themselves given by divergent series
and are complex for g negative. Their imaginary part contributes directly to
the imaginary part of Γ̃(n)(p1, . . . , pn) for n ≤ 4. In the φ6 field theory in
dimension 3, for example, these contributions cancel the divergences coming
from the integral over λ. By contrast, here the integrals over λ are finite at
this order. This implies in particular that in the minimal subtraction scheme
the imaginary parts of the renormalization constants vanish at leading order.
In another renormalization scheme (fixed momentum subtraction for example)
these imaginary parts are finite at leading order.

The large instanton contribution. We now examine the convergence of the
λ integral for λ small. The behaviour of g(λ) is totally unknown. On the
other hand, it is easy to verify that the factors u(pi/λ) decrease exponentially
for λ small. Thus, if the behaviour of g(λ) is not too dramatic, the integrals
will converge and it will be justified to replace g(λ) by the expansion (5.49).
For the vacuum amplitude, this argument does not apply, and so the result is
unknown.

This analysis shows that, although this calculation seems to be a simple
formal extension of the calculation for lower dimensions, coupling constant
renormalization introduces a set of new problems which are not all completely
under control. The fact that the theory is massless only makes matters worse.
Consideration of the massive theory improves the situation in this respect, but
the instanton calculation becomes more complicated.
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5.4 The massive theory

It can be shown that massive field equations have no instanton solutions and
that the minimum of the action is obtained from the massless theory. To study
the massive theory, we thus start from the instanton solution of the massless
theory, with its scale parameter λ. However, we notice a difficulty: as explained
in section 5.1 the integral of φ2c is IR divergent. We have thus to modify the
field configuration at large distances, by connecting it smoothly to the solution
of the massive free equation with mass m. Qualitatively speaking we consider
a configuration φc(x,m) that up to a distance R, λR ≫ 1, mR≪ 1, is λφc(λx)
and for |x| > R, is proportional to the free massive solution. An analogous
problem is met in the case of multi-instanton configuration. Although the
theory is no longer scale invariant, λ has to be kept as a collective coordinate.
The mass term then acts as an IR cut-off, and restrict the domain of integration
in λ to values large with respect to m. The corresponding classical action has
the form

Sm(φc) = −1

g

(

8π2

3
+ 8π2m

2

λ2
ln
λ

m

)

for λ≫ m, (5.58)

where the lnm term is directly related to the initial IR divergence of the φ2

integral.
The remaining part of the calculation closely follows the calculation for the

massless case and the reader is referred to the literature for details.
In the massless theory, the instanton contribution to the vacuum energy

could not be evaluated without some knowledge of the non-perturbative IR
behaviour of the RG β-function. In the massive theory the problem is solved
because the λ integral is cut at a scale m/

√−g. For correlation functions the
integral will be cut by the largest between momenta and m/

√−g. This implies
that the limits m→ 0 and g → 0 do not commute.



Chapter 6

Quantum Field Theory: Degenerate Classical
Minima

In this chapter, we consider a generalization to field theory of a situation that
we have discussed in chapter 1 in which instantons play a role: classical actions
with degenerate isolated minima.
In quantum (or statistical) field theory the problem is more subtle because

phase transitions are possible and the quantum ground state or vacuum can be
degenerate. There again, the presence of instantons confirms that the classical
minima are connected and that the symmetry between them is not sponta-
neously broken.
Examples of instantons of this type are provided in two dimensions by the

CP (N − 1) models and in four dimensions by SU(2) gauge theories. In both
examples, the classical vacua have a periodic structure, reminiscent of the peri-
odic cosine potential discussed in section 1.5 and the classification of instanton
solution and the determination of their contributions involve topological con-
siderations.

6.1 Instantons in stable boson field theories: General re-
marks

We first briefly discuss the possible existence of instantons in stable boson field
theories, connecting for example degenerate classical minima. Unfortunately,
the physically most interesting examples correspond to scale invariant classical
theories and the evaluation of the instanton contributions at leading order,
which formally follows the lines presented in chapter 3, leads to difficulties
due both to UV and IR divergences. Some of them have been examined in
chapter 5. Since for the two examples we consider in sections 6.2, 6.3, they
have not been satisfactorily solved yet, we restrict ourselves here to classical
considerations.

6.1.1 Scalar field theories

We first assume that the action has the general form

S(φ) =
∫

[

1
2gij(φ)∂µφ

i∂µφ
j + V (φ)

]

ddx , (6.1)
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in which φi is a multicomponent scalar boson field, gij(φ) a positive matrix
(positive definite almost everywhere) and V (φ) an analytic potential that van-
ishes at its minima:

min
{φ}

V (φ) = 0 . (6.2)

We denote by φc an instanton solution. In the action S(φc), we substitute
φc(x) 7→ φc(λx), then change variables λx 7→ x and express the stationarity of
the action for λ = 1. We obtain a simple generalization of equation (3.14): [3]

(2− d)

∫

1
2

(

gij(φ)∂µφ
i
c∂µφ

j
c

)

ddx = d

∫

V (φc)d
dx .

We see that this equation has no solution for d > 2. For d = 2, it has solutions
only if

V
(

φc(x)
)

= 0 . (6.3)

The condition (6.2) then implies that φc(x) is for all x a minimum of the
potential:

∂V (φc)

∂φi
= 0 ,

and, therefore, φc(x) is a solution of the field equations:

δ

∂φk(y)

∫

1

2
gij(φ)∂µφ

i∂µφ
jd2x = 0 .

These two equations are in general incompatible, except if V (φ) vanishes identi-
cally. In the latter case the action (6.1) corresponds to two-dimensional models
based on Riemannian manifolds with gij as a metric tensor. Of particular in-
terest are models based on homogeneous spaces, which have a group structure
and, even more specifically, on symmetric spaces because they have a unique
metric. Among them, the CP (N − 1) models are known to admit instanton
solutions and we describe them in section 6.2.
Finally, note that the classical field theory is then scale invariant in the sense

that the action is invariant under the dilatation φ(x) 7→ φ(λx).

Gauge theories. We now consider a gauge invariant field theory, in which
gauge fields Aa

µ interact with scalar fields, the gauge invariant action taking
the form

S(φ,Aµ) =

∫

ddx
[

1
4F

a
µνF

a
µν + 1

2 (Dµφi)
2
+ V (φ)

]

. (6.4)

Again we assume the existence of a finite action solution {φc, Ac
µ} (in which

Ac
µ is not a pure gauge), and calculate the action for λAc

µ(λx) and φc(λx).
After the change of variables λx 7→ x, we obtain [3]

S(φc,Ac
µ;λ) = λ4−d

∫

1

4
(Fµν)

2
ddx+λ2−d

∫

1

2
(Dµφ)

2
ddx+λ−d

∫

V (φ)ddx .

(6.5)
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Stationarity at λ = 1 implies

(4− d)

∫

1

4
(Fµν)

2
ddx+ (2− d)

∫

1

2
(Dµφ)

2
ddx− d

∫

V (φ)ddx = 0 . (6.6)

We see that no solution can exist for d > 4, since a sum of negative terms
cannot vanish.
For d = 4 we find two conditions:

V (φ) = 0 , (6.7a)

Dµφ = 0 . (6.7b)

From the field equations, we then conclude that Ac
µ is the solution of the pure

gauge field equations. As we show in section 6.3, instantons can indeed be
found in pure non-Abelian gauge theories. Equation (6.7b), which now is an
equation for φc, then leads to the integrability conditions:

[Dµ,Dν ] = Fµν =⇒
(

F a
µν

)c
taijφ

c
j = 0 , (6.8)

in which the matrices ta are the generators of the Lie algebra. The conditions
(6.8) together with the equation (6.7a) show that in general the system has
only the trivial solution φc = 0.
Then, following the same argument, one verifies that the pure gauge theory

is scale invariant.

6.2 Instantons in CP (N − 1) models

The preceding considerations can be illustrated by the two-dimensionalCP (N−
1) models [19]. We mainly describe the nature of the instanton solutions and
refer the reader to the literature for a more detailed analysis.

The CP (N−1) manifold. The CP (N−1) manifold (for (N−1)-dimensional
Complex Projective) is isomorphic to the U(N)/U(1)/U(N − 1) symmetric
(coset) space, a complex Grassmannian manifold. It can be parametrized by
an N -component complex unit vector ϕ with the equivalence relation

ϕ ∼ ϕ′ ⇔ ϕ′ = eiΛ ϕ , Λ ∈ R .

A symmetric space admits a unique metric.

The CP (N − 1) field theory. We consider an N -component complex scalar
field ϕ belonging to CP (N − 1), that is, subject to the condition

ϕ̄(x) ·ϕ(x) = 1 , (6.9)

with an equivalence relation that now takes a form of an Abelian U(1) gauge
transformation:

ϕ(x) ∼ ϕ′(x) ⇔ ϕ′(x) = eiΛ(x) ϕ(x) , Λ ∈ R . (6.10)
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There exists a unique classical action with only two derivatives, up to a multi-
plicative constant, which can be written as

S(ϕ, Aµ) =
1

g

∫

d2xDµϕ ·Dµϕ , (6.11)

(g plays the role of ~) in which the field Aµ is a gauge field that implements
the equivalence (6.10) and Dµ is the associated covariant derivative,

Dµ = ∂µ + iAµ . (6.12)

Since the action is a quadratic form in Aµ that contains no kinetic term, Aµ

is an auxiliary field that can be integrated out. The integration results in
replacing Aµ by the solution of the Aµ field equation:

Aµ(x) =
1
2 i [ϕ̄(x) · ∂µϕ(x) − ∂µϕ̄(x) ·ϕ(x)] = iϕ̄(x) · ∂µϕ(x), (6.13)

where the relation (6.9) has been used. After this substitution, ϕ̄(x) · ∂µϕ(x)
can be considered as a composite gauge field. However, below we work mainly
with the initial representation (6.11).

Instantons and topology. To prove the existence of locally stable non-trivial
minima of the action, the following Bogomolny inequality [18] can be used:

∫

d2x |Dµϕ∓ iǫµνDνϕ|2 ≥ 0 , (6.14)

(ǫµν being the antisymmetric tensor, ǫ12 = 1). After expansion, the inequality
can be cast into the form

S(ϕ) ≥ 2π|Q(ϕ)|/g (6.15)

with

Q(ϕ) = − i

2π
ǫµν

∫

d2xDµϕ ·Dνϕ =
i

2π

∫

d2x ǫµνϕ̄ ·DνDµϕ . (6.16)

Then,
iǫµνDνDµ = 1

2 iǫµν [Dν ,Dµ] =
1
2Fµν , (6.17)

where Fµν is the curvature:

Fµν = ∂µAν − ∂νAµ .

Therefore, using (6.9),

Q(ϕ) =
1

4π

∫

d2x ǫµνFµν . (6.18)
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The integrand is a total divergence since

1
2ǫµνFµν = ∂µǫµνAν ,

proportional to the two-dimensional Abelian chiral anomaly. Substituting this
form into equation (6.18) and integrating over a large disc of radius R, one
obtains

Q(ϕ) =
1

2π
lim

R→∞

∮

|x|=R

dxµAµ(x). (6.19)

Q(ϕ) thus depends only on the behaviour of the classical solution for |x| large
and is a topological charge. Finiteness of the action demands that at large
distances Dµϕ vanishes and, therefore,

Dµϕ = 0 ⇒ [Dµ,Dν ]ϕ = Fµνϕ = 0 .

Since ϕ 6= 0, this equation implies that Fµν vanishes and, thus, that Aµ is a
pure gauge and ϕ a gauge transform of a constant vector:

Aµ(x) = ∂µΛ(x), ϕ(x) = e−iΛ(x) v with v̄ · v = 1 .

Thus,

Q(ϕ) =
1

2π
lim

R→∞

∮

|x|=R

dxµ∂µΛ(x) . (6.20)

The topological charge measures the variation of the angle Λ(x) on a large
circle, which is a multiple of 2π because ϕ is regular. One is thus led to the
consideration of the homotopy classes of continuous mappings from U(1), that
is, S1 to S1, which are characterized by an integer n, the winding number. This
is equivalent to the statement that the homotopy group π1(S1) is isomorphic
to the additive group of integers Z.
Then,

Q(ϕ) = n ⇒ S(ϕ) ≥ 2π|n|/g . (6.21)

Instanton solutions. The equality S(ϕ) = 2π|n|/g corresponds to a local
minimum of the action. Field configurations that satisfy this condition, sat-
isfy the field equations but also the first order partial differential (self-duality)
equations

Dµϕ = ±iǫµνDνϕ . (6.22)

For each sign, there is really only one equation, for instance µ = 1, ν = 2. It is
simple to verify that both equations imply the ϕ-field equations, and combined
with the constraint (6.9), the A-field equation (6.13). In complex coordinates
z = x1 + ix2, z̄ = x1 − ix2 and, thus,

∂z = 1
2 (∂x1

− i∂x2
) , ∂z̄ = 1

2 (∂x1
+ i∂x2

) ,

they can be written as

∂z̄ϕα(z, z̄) = −iAz̄(z, z̄)ϕα(z, z̄), (6.23a)

∂zϕα(z, z̄) = −iAz(z, z̄)ϕα(z, z̄), (6.23b)
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where
Az = 1

2 (A1 − iA2), Az̄ = 1
2 (A1 + iA2).

If ϕ satisfies equation (6.23a), ϕ̄ satisfies equation (6.23b). Thus, exchanging
the two equations just amounts to exchanging ϕ and ϕ̄. Therefore, we solve
only the equation (6.23a). The general solution can be written as

ϕα(z, z̄) = κ(z, z̄)Pα(z),

where κ(z, z̄) is a particular solution of

∂z̄κ(z, z̄) = −iAz̄(z, z̄)κ(z, z̄).

Vector solutions of equations (6.22) are thus proportional to holomorphic or
anti-holomorphic (depending on the sign in equation (6.22)) vectors (this re-
flects the underlying conformal invariance of the classical field theory). The
phase of the function κ(z, z̄) can be cancelled by a gauge transformation (6.10).
The function κ(z, z̄) can thus be chosen real (this corresponds to the ∂µAµ = 0
gauge), then is constrained by the condition (6.9):

κ2(z, z̄)P · P̄ = 1 .

The asymptotic conditions constrain the functions Pα(z) to be polynomials.
Common roots to all Pα would correspond to non-integrable singularities for
ϕα and, therefore, are excluded by the condition of finiteness of the action.
Finally, if the polynomials have maximal degree n, asymptotically

Pα(z) ∼ cαz
n ⇒ ϕα ∼ cα√

c · c̄
(z/z̄)n/2.

When the phase of z varies by 2π, the phase of ϕα varies by 2nπ, showing that
the corresponding winding number is n.

The structure of the semi-classical vacuum. In contrast to our analysis of
periodic potentials in quantum mechanics, here we have discussed the existence
of instantons without reference to the structure of the classical vacuum. To
find an interpretation of instantons in gauge theories, it is useful to express
the results in the temporal gauge A2 = 0. Then, the action is still invariant
under space-dependent gauge transformations. The minima of the classical
ϕ potential correspond to fields ϕ(x1), where x1 is the space variable, gauge
transforms of a constant vector:

ϕ(x1) = eiΛ(x1) v , v̄ · v = 1 .

Moreover, if the vacuum state is invariant under space reflection, ϕ(+∞) =
ϕ(−∞) and, thus,

Λ(+∞)− Λ(−∞) = 2νπ ν ∈ Z .
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Again ν is a topological number that classifies degenerate classical minima, and
the semi-classical vacuum has a periodic structure. This analysis is consistent
with Gauss’s law, which implies only that states are invariant under infinitesi-
mal gauge transformations and, thus, under gauge transformations of the class
ν = 0 that are continuously connected to the identity and do not change the
topological number.
We now consider a large rectangle with extension R in the space direction

and T in the Euclidean time direction and by a smooth gauge transformation
continue the instanton solution to the temporal gauge. Then, the variation of
the pure gauge comes entirely from the sides at fixed time. For R → ∞, one
finds

Λ(+∞, 0)− Λ(−∞, 0)− [Λ(+∞, T )− Λ(−∞, T )] = 2nπ .

Therefore, instantons interpolate between different classical minima. Like in
the example of the cosine potential and in analogy with the expression (1.54),
to project onto a proper quantum eigenstate, the ‘θ-vacuum’ corresponding to
an angle θ, one can add a topological term to the classical action. Here,

S(ϕ) 7→ S(ϕ) + i
θ

4π

∫

d2x ǫµνFµν . (6.24)

Remark. Replacing in the topological charge Q the gauge field by the explicit
expression (6.13), one finds

Q(ϕ) =
i

2π

∫

d2x ǫµν∂µϕ̄ · ∂νϕ =
i

2π

∫

dϕ̄α ∧ dϕα ,

where the notation of exterior differential calculus has been used. We recognize
the integral of a two-form, a symplectic form, and 4πQ is the area of a 2-surface
embedded in CP (N − 1). A symplectic form is always closed. Here it is also
exact, so that Q is the integral of a one-form (cf. equation (6.19)):

Q(ϕ) =
i

2π

∫

ϕ̄αdϕα =
i

4π

∫

(ϕ̄αdϕα − ϕαdϕ̄α) .

The O(3) non-linear σ-model. The CP (1) model is locally isomorphic to the
O(3) non-linear σ-model, with the identification

φi(x) = ϕ̄α(x)σ
i
αβϕβ(x) , (6.25)

where σi are the three Pauli matrices.
Using, for example, an explicit representation of Pauli matrices, one indeed

verifies
φi(x)φi(x) = 1 , ∂µφ

i(x)∂µφ
i(x) = 4Dµϕ ·Dµϕ .

Therefore, the field theory can be expressed in terms of the field φi and takes
the form of the non-linear σ-model. The fields φ are gauge invariant and the
whole physical picture is a picture of confinement of the charged scalar ‘quarks’
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ϕα(x) and the propagation of neutral bound states corresponding to the fields
φi.
Instantons in the φ description take the form of φ configurations with uni-

form limit for |x| → ∞. Thus, they define a continuous mapping from the
compactified plane topologically equivalent to S2 to the sphere S2 (the φi con-
figurations). Since π2(S2) = Z, the ϕ and φ pictures are consistent.
In the example of CP (1), a solution of winding number 1 is

ϕ1 =
1√

1 + zz̄
, ϕ2 =

z√
1 + zz̄

.

Translating the CP (1) minimal solution into the O(3) σ-model language, one
finds

φ1 =
z + z̄

1 + z̄z
, φ2 =

1

i

z − z̄

1 + z̄z
, φ3 =

1− z̄z

1 + z̄z
.

This defines a stereographic mapping of the plane onto the sphere S2, as one
verifies by setting z = tan(η/2) eiθ, η ∈ [0, π].
In the O(3) representation

Q =
i

2π

∫

dϕ̄α ∧ dϕα =
1

8π
ǫijk

∫

φidφj ∧ φk ≡ 1

8π
ǫµνǫijk

∫

d2xφi∂µφj∂νφk .

The topological charge 4πQ has the interpretation of the area of the sphere S2,
multiply covered, and embedded in R

3. Its value is a multiple of the area of
S2, which in this interpretation explains the quantization.

6.3 Instantons in the SU(2) gauge theory

We now give an example of instantons in four dimensions [20], directly relevant
to particle physics. According to the analysis of section 6.1, we can consider
only pure gauge theories. Actually it is sufficient to consider the gauge group
SU(2) since a general theorem states that for a Lie group containing SU(2) as
a subgroup the instantons are those of the SU(2) subgroup.
In the absence of matter fields it is convenient to use a SO(3) notation. The

gauge field Aµ is a SO(3) vector that is related to the corresponding element
Aµ of the Lie algebra by

Aµ = − 1
2 iA

a
µσ

a , (6.26)

where σa are the three Pauli matrices. The gauge action then reads

S(Aµ) =
1

4g2

∫

[Fµν(x)]
2
d4x , (6.27)

(g is the gauge coupling constant) where the curvature

Fµν = ∂µAν − ∂νAµ +Aµ ×Aν , (6.28)

is also an SO(3) vector.
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The corresponding classical field equations are

DνFνµ = ∂νFνµ +Aν × Fνµ = 0 , (6.29)

where Dµ is the gauge covariant derivative.
The existence and some properties of instantons in this theory follow from

considerations analogous to those presented for the CP (N − 1) models.

Instantons and topology. We define the dual of the tensor Fµν by

F̃µν = 1
2ǫµνρσFρσ . (6.30)

Then, the Bogomolny inequality

∫

d4x
[

Fµν(x) ± F̃µν(x)
]2

≥ 0 (6.31)

implies
S(Aµ) ≥ 8π2|Q(Aµ)|/g2 (6.32)

with

Q(Aµ) =
1

32π2

∫

d4xFµν(x) · F̃µν(x). (6.33)

The expression Q(Aµ) is proportional to the integral of the chiral anomaly (cf.,
equation (6.50)), here written in SO(3) notation.
One verifies that the quantity Fµν · F̃µν is a pure divergence:

Fµν · F̃µν = ∂µVµ

with

Vµ = −4 ǫµνρσ tr
(

Aν∂ρAσ + 2
3AνAρAσ

)

(6.34a)

= 2ǫµνρσ
[

Aν · ∂ρAσ + 1
3Aν · (Aρ ×Aσ)

]

. (6.34b)

The integral thus depends only on the behaviour of the gauge field at large
distances. Here again, as in the CP (N − 1) model, the bound involves a
topological charge: Q(Aµ).
Stokes theorem implies

∫

D
d4x∂µVµ =

∫

∂D
dS n̂µVµ ,

where dS is the measure on the boundary ∂D of the four-volume D and n̂µ the
unit vector normal to ∂D. We then take for D a sphere of large radius R and
find for the topological charge

Q(Aµ) =
1

32π2

∫

d4x trFµν(x) · F̃µν(x) =
1

32π2
R3

∫

r=R

dΩ n̂µVµ , (6.35)
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where we have set dS = R3dΩ.
The finiteness of the action implies that the classical solution must asymp-

totically become a pure gauge, that is, with our conventions,

Aµ = − 1
2 iAµ · σ = g(x)∂µg

−1(x) +O
(

|x|−2
)

|x| → ∞ . (6.36)

The element g of the SU(2) group can be parametrized in terms of Pauli
matrices:

g = u41+ iu · σ , (6.37)

where the four-component real vector (u4,u) satisfies

u24 + u2 = 1 ,

and thus belongs to the unit sphere S3. Since SU(2) is topologically equivalent
to the sphere S3, the pure gauge configurations on a sphere of large radius
|x| = R define a continuous mapping from S3 to S3. Such mappings belong to
different homotopy classes that are characterized by an integer n ∈ Z called the
winding number. Here, we identify the homotopy group π3(S3), which again is
isomorphic to the additive group of integers Z.

The n = 1 example. The simplest one to one mapping corresponds to an
element of the form

g(x) =
x41+ ix · σ

r
, r = (x24 + x2)1/2 (6.38)

and thus
Ai

m ∼
r→∞

2 (x4δim + ǫimkxk) r
−2, Ai

4 = −2xir
−2. (6.39)

Note that the transformation

g(x) 7→ U1g(x)U
†
2 = g(Rx),

where U1 and U2 are two constant SU(2) matrices, induces a SO(4) rotation
of matrix R of the vector xµ. Then,

U2∂µg
†(x)U†

1 = Rµν∂νg
†(Rx), U1g(x)∂µg

†(x)U†
1 = g(Rx)Rµν∂νg

†(Rx)

and, therefore,
U1Aµ(x)U

†
1 = RµνAν(Rx).

Introducing this relation into the definition (6.34a) of Vµ, one verifies that the
dependence on the matrix U1 cancels in the trace and, thus, Vµ transforms
like a 4-vector. Since only one vector is available, and taking into account
dimensional analysis, one concludes that

Vµ ∝ xµ/r
4 .
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We still have to calculate the coefficient. For r → ∞, Aµ approaches a pure
gauge (equation (6.36)) and, therefore, Vµ can be transformed into

Vµ ∼
r→∞

− 1
3ǫµνρσAν · (Aρ ×Aσ).

It is sufficient to calculate V1. We choose ρ = 3, σ = 4 and multiply by a factor
six to take into account all other choices. Then,

V1 ∼
r→∞

16ǫijk(x4δ2i + ǫi2lxl)(x4δ3j + ǫj3mxm)xk/r
6 = 16x1/r

4

and, thus, the proportionality coefficient is determined:

Vµ ∼ 16xµ/r
4 = 16n̂µ/R

3 . (6.40)

The powers of R in equation (6.35) cancel and since
∫

dΩ = 2π2, the value of
the topological charge is simply

Q(Aµ) = 1 . (6.41)

General situation. As in the case of the CP (N − 1) model, the second
expression in equation (6.35), in which Vµ is replaced by its general asymptotic
form, has a geometric interpretation. Quite generally, in the parametrization
(6.37) one finds

Vµ ∼
r→∞

8
3ǫµνρσǫαβγδuα∂νuβ∂ρuγ∂σuδ .

A few algebraic manipulations starting from (again in the notation of exterior
differential calculus)

∫

S3

R3dΩ n̂µVµ = 1
6ǫµνρσ

∫

Vµdxν ∧ dxρ ∧ dxσ ,

then yield

Q =
1

12π2
ǫαβγδ

∫

uαduβ ∧ duγ ∧ duδ , (6.42)

has been used. The expression is proportional to the area Σ4 of the sphere S3,
which in the same notation can be written as

Σ4 =
1

3!
ǫαβγδ

∫

uαduβ ∧ duγ ∧ duδ = 2π2 ,

when the vector uµ describes the sphere S3 only once. Because in general uµ
describes S3 n times when xµ describes S3 only once, a factor n is generated.
The inequality (6.33) then implies

S(Aµ) ≥ 8π2|n|/g2 . (6.43)
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On the other hand, without any explicit calculation, it is known from the
study of the index of the gauge covariant Dirac operator 6D = γµDµ, that the
topological charge is an integer. In SO(3) notation,

Q(Aµ) =
1

32π2

∫

d4xFµν · F̃µν = n+ − n− , (6.44)

where n± is the number of eigenvectors with eigenvalue zero and with chirality
±.

Instanton solutions. The equality is obtained for fields satisfying the self-
duality equations

Fµν = ±F̃µν . (6.45)

Because the inequality corresponds to a local minimum of the action, the solu-
tions satisfy also the general classical field equations (6.29) but the equations
(6.45) are first order partial differential equations and, thus, easier to solve.
The one-instanton solution, which depends on an arbitrary scale parameter λ,
can be written as

Ai
m =

2

r2 + λ2
(x4δim + ǫimkxk) , m = 1, 2, 3 , Ai

4 = − 2xi
r2 + λ2

. (6.46)

The semi-classical vacuum. We now proceed in analogy with the analysis of
the CP (N − 1) model. In the temporal gauge A4 = 0, the classical minima of
the potential correspond to gauge field components Ai, i = 1, 2, 3, which are
pure gauge functions of the three space variables xi:

Am = − 1
2 iAm · σ = g(xi)∂mg−1(xi) . (6.47)

The structure of the classical minima is related to the homotopy classes of
mappings of the group elements g into compactified R

3 (because g(x) goes to
a constant for |x| → ∞), that is, again of S3 into S3 and thus the semi-classical
vacuum, as in the CP (N−1) model, has a periodic structure. One verifies that
the instanton solution (6.46), transported into the temporal gauge by a gauge
transformation, connects minima with different winding numbers. Therefore,
as in the case of the CP (N − 1) model (equation (6.24)), to project onto a
θ-vacuum, one adds a term to the classical action of gauge theories:

Sθ(Aµ) = S(Aµ) +
iθ

32π2

∫

d4xFµν(x) · F̃µν(x), (6.48)

and then integrates over all fields Aµ without restriction. At least in the
semi-classical approximation, the gauge theory thus depends on one additional
parameter, the angle θ.

The strong CP violation problem. For non-vanishing values of θ, due to
instanton contributions the additional term violates CP (charge conjugation
times space reflection) conservation in strong interactions and is at the origin of
the strong CP violation problem: Except if θ vanishes for some as yet unknown
reason then, according to experimental data, it can only be unnaturally small.
Indeed, limits on the neutron electric dipole moment imply |θ| < 10−10.
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6.3.1 Fermions in an instanton background

In QCD gauge fields are coupled to quarks Q, Q̄ with an action of the form
(now in SU(3) notation and gauge fields and curvature tensor being matrices
in the Lie algebra):

S(Aµ, Q̄,Q) = −
∫

d4x





1

4g2
trF2

µν +

NF
∑

f=1

Q̄f (6D+mf )Qf



 ,

NF being the number of flavours.

The strong CP violation problem. Instantons contribute to the θ-term in
(6.48) and this leads to the strong CP violation problem. However, if at least
one fermion field is massless, the determinant resulting from the fermion inte-
gration vanishes. Indeed, in presence of instantons the Dirac operator has at
least one vanishing eigenvalue because the index n+−n− of the Dirac operator
does not vanish, being related to the chiral anomaly by (equation (6.24)) [25]

− 1

16π2

∫

d4x trFµν(x)F̃µν (x) = n+ − n− , (6.49)

n± being the number of eigenvectors with eigenvalue zero and with chirality
±. Then, the instantons do not contribute to the functional integral and the
strong CP violation problem is solved.
However, such an hypothesis seems to be inconsistent with experimental

data and an indirect determination of quark masses, the lightest u quark mass
being found in the range 1.5MeV < mu < 3.5MeV. Another scheme is based
on a scalar field, the axion, which unfortunately has remained, up to now,
experimentally invisible [21].

The U(1) problem. Experimentally it is observed that the masses of a num-
ber of pseudo-scalar mesons are smaller or even much smaller (in the case of
pions) than the masses of the corresponding scalar mesons. This strongly sug-
gests that pseudo-scalar mesons are almost Goldstone bosons associated with
an approximate chiral symmetry realized in a phase of spontaneous symmetry
breaking. (When a continuous (non gauge) symmetry is spontaneously broken,
the spectrum of the theory exhibits massless scalar particles called Goldstone
bosons.) This picture is confirmed by its many other phenomenological impli-
cations.
In the Standard Model, this approximate symmetry is viewed as the conse-

quence of the very small masses of the u and d quarks and the moderate value
of the strange s quark mass.
Indeed, in a theory in which the quarks are massless, the action has a chiral

U(NF)× U(NF) symmetry, in which NF is the number of flavours. The spon-
taneous breaking of chiral symmetry to its diagonal subgroup U(NF) leads to
expect N2

F Goldstone bosons associated with all axial currents (corresponding
to the generators of U(N)× U(N) that do not belong to the remaining U(N)
symmetry group). In the physically relevant theory, the masses of quarks are
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non-vanishing but small, and one expects this picture to survive approximately
with, instead of Goldstone bosons, light pseudo-scalar mesons.
However, the experimental mass pattern is consistent only with a slightly

broken SU(2)× SU(2) and more badly violated SU(3)× SU(3) symmetries.
The solution of the problem is related to the axial anomaly: due to the

anomaly, the divergence of the axial current J5
λ corresponding to the U(1)

Abelian subgroup does not vanish and is given by

〈

∂λJ
5
λ(x)

〉

= − i

8π2
trFµν(x)F̃µν (x). (6.50)

The WT identities, which imply the existence of Goldstone bosons, correspond
to constant (global or space-independent) group transformations and, thus, in-
volve only the space integral of the divergence of the current. Since the anomaly
is a total derivative, one might have expected the integral to vanish. However,
non-Abelian gauge theories have configurations that give non-vanishing values
of the form (6.44) to the space integral of the anomaly (6.50). For small cou-
plings, these configurations are in the neighbourhood of instanton solutions (as
discussed in section 6.3). This indicates (though no satisfactory calculation
of the instanton contribution has been performed yet) that for small, but non-
vanishing, quark masses the U(1) axial current is far from being conserved and,
therefore, no corresponding light almost Goldstone boson is generated [22].
Instanton contributions to the anomaly thus resolve a long standing experi-

mental puzzle.
For additional speculations and a review see, for example, [23,24].

6.3.2 The Gaussian integration

Both in CP (N−1) models and non-Abelian gauge theories the classical theory
is scale invariant. Therefore, solutions depend on a scale parameter that is an
additional collective coordinate over which one has to integrate. This leads to
a number of difficulties as the analysis of the massless φ44 field theory reveals
(see chapter 5). Both theories are asymptotically free and the main problems
come from the infrared region, that is, from instantons of large size for which
the semi-classical approximation is no longer legitimate because the interaction
increases with distance.
The role of instantons thus is not fully understood, a complete calculation

being possible only with an IR cut-off, provided, for example, by a finite volume.
Moreover, singularities not of semi-classical nature may also be expected.



Chapter 7

Perturbation Series at Large Orders. Summa-
tion Methods

In section 2.3, we have determined the analytic structure of the ground state
energy E(g) of the quartic anharmonic oscillator. We have shown that E(g)
is analytic in a cut-plane, and calculated by instanton methods its imaginary
part on the cut for g small and negative. On the other hand, perturbation
theory yields E(g) for g small as a power series in g:

E(g) =
∞
∑

k=0

Ekg
k. (7.1)

In this chapter, we estimate the behaviour of the coefficients Ek when the order
k becomes large by relating it to the behaviour of ImE(g) for g → 0−. We then
generalize the method to the class of potentials for which we have calculated
instanton contributions. The same method can be readily applied to boson
field theories [16, 17, 3] using the results of chapter 3, while the extension to
field theories involving fermions requires, as we show, solving some additional
problems [26].
We already know that the expansion (7.1) is divergent for all values of g.

This implies that, even for g small, the series does not determine the function
E(g) uniquely. We thus examine the implications of the large order behaviour
for the problem of the summation of the series. Finally, we describe a few
practical methods commonly used to sum divergent series of the type met in
quantum mechanics and quantum field theory. Some of these methods have
been successfully applied to the (φ2)2 field theory in two and three dimensions
and have led to precise predictions of critical exponents, universal quantities
relevant to the theory of continuous phase transitions.

7.1 Quantum mechanics

We first consider two situations where we have already found instantons, both
related to quantum metastability. We then argue that for other analytic poten-
tials complex solutions to the Euclidean equation of motion are also relevant.
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7.1.1 Metastable states: Real instantons

The quartic anharmonic oscillator. We first consider the ground state energy
E(g) of the quartic anharmonic oscillator introduced in section 2.3. Since E(g)
is analytic in the cut-plane and behaves like g1/3 for g large, it has a Cauchy
representation of the form

E(g) =
1

2
+
g

π

∫ 0

−∞

ImE(g′) dg′

g′(g′ − g)
. (7.2)

Expanding the integrand in powers of g, one obtains an integral representation
for the coefficients Ek:

Ek =
1

π

∫ 0

−∞

ImE(g) dg

gk+1
for k > 0 . (7.3)

When k, the order in the expansion, becomes large, due to the factor g−k the
dispersion integral (7.3) is dominated by the small negative g values. In section
2.3, we have calculated ImE(g) for g small and negative. We can here use this
result to estimate the large k behaviour of Ek:

Ek ∼
k→∞

1

π

∫ 0−
(

8

π

)1/2
1√−g

e4/3g

gk+1
[1 +O(g)] dg . (7.4)

The explicit integration yields

Ek = (−1)k+1

(

6

π3

)1/2(
3

4

)k

Γ(k + 1/2) [1 +O (1/k)] . (7.5)

The factor Γ(k + 1/2) is thus responsible for the divergence of the series.
Successive corrections to the semi-classical result yield a series in powers of

g which, integrated, generates a systematic expansion in powers of 1/k.

Remark. We note that for g > 0, the stable situation, the series is alternating
due to sign factor, while in the metastable situation g < 0 all terms have the
same sign.

General potentials. The same argument is applicable to the generic situation
described in section 2.1. We can calculate the energy of the metastable state
in power series of the coupling constant g by making a systematic expansion
around the relative minimum of the potential. On the other hand we can, as
above, derive from the knowledge of the imaginary part of the energy level for
small coupling, an estimate of the behaviour of the perturbative coefficients at
large order. Let us consider the action

S(q) =
∫

dt
[

1
2 q̇

2(t) + g−1V (q
√
g)
]

, (7.6)

where here g plays the role of ~.
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The analogue of the dispersion integral (7.3) is

Ek ∼ 1

π

∫ ∞

0

ImE(g)

gk+1
dg .

The behaviour of ImE(g) for g small is given by expression (2.13) with the
changes m = 1, E0 7→ E0/~ and ~ 7→ g:

ImE0 ∼ 1

2i

[

det′(MM−1
0 )
]−1/2

√

A

2πg
e−A/g . (7.7)

Integrating near g = 0, one obtains

Ek ∼ 1

i(2π)3/2
[

det′(MM−1
0 )
]−1/2

A−kΓ(k + 1/2), (7.8)

where A is the classical action

A = 2

∫ q0

0

√

2V (q) dq > 0 . (7.9)

We now see generic features emerge: at large orders, the perturbative coeffi-
cients Ek behave like

Ek ∼
k→∞

Ckb−1k!A−k. (7.10)

The factor k! is universal and characteristic of the semi-classical or loop ex-
pansion. It shows that the perturbation series is a divergent series. The factor
A−k depends only on the action, since it is the action of the classical solution;
in particular, it also characterizes the behaviour at large orders of the excited
energy levels or of correlation functions. The power kb comes from the power
of g in front of the result. It depends, in particular, on the number of continu-
ous symmetries broken by the classical solution, but it would also change if we
considered an excited state rather than the ground state. This can be verified
by explicitly calculating the imaginary parts of the energy of the excited levels.
The parameter b is in general a half integer. Finally, there is a constant multi-
plicative factor C which depends in a more complicated way of the expanded
quantity.

Discussion. In both examples, we have calculated the large order behaviour
of perturbation series from the decay rate, due to barrier penetration, of a
metastable minimum of the potential. In particular, we have found that in the
metastable case, all terms of the series at larger order have the same sign since
either A is positive or g is negative.
By contrast, for g positive, in which case perturbation series has been ex-

panded around the stable minimum of the potential, we observe that the per-
turbative coefficients oscillate in sign. Moreover, we note that for g > 0, the
instanton solution becomes purely imaginary. This helps to understand how
the large behaviour in the generic stable situation can be determined.
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7.1.2 Complex instantons

Up to now, we have characterized the large order behaviour of perturbation
theory in two cases, in the generic case in which we expand around a relative
minimum of the potential, and in one special case in which we were expanding
around an absolute minimum of the potential, but which by analytic continu-
ation in the coupling constant could become a relative one.
We now consider actions of the form (7.6), in which the potential V (q) is an

entire function of q. We assume that perturbation theory is expanded around
q = 0, the absolute minimum of the potential.
Then, clearly no real instanton solution can be found. Following the example

of the anharmonic oscillator, we thus assume that we can introduce parameters
in the potential that allow an analytic continuation to a metastable situation.
We then obtain the large order behaviour from the expression (7.8). We then
invert the analytic continuation to return to the initial situation. We expect
that the large behaviour of the initial expansion will be given by the analytic
continuation of the expression (7.8).
We can now formulate the rules of the large order behaviour calculation di-

rectly in the initial theory: to the complex zeros (at finite or infinite distance) of
the potential V (q) are associated complex instanton solutions, with, in general,
complex (or exceptionally negative) action. These instantons are candidates to
contribute to the large order behaviour. In the expression (7.8), we see that
the action(s) with the smallest modulus (when the action is complex, there will
be at least two complex conjugate actions) gives the dominant contribution to
the large order behaviour. Note that the instanton solutions always start from
a minimum of the potential and return to the same minimum.
Let us stress, here, that the difference we have found between the anharmonic

oscillator and the metastable case is generic. In the stable case, the classical
action is non-real positive, and the perturbative coefficients at large order have
an order-dependent phase factor. This property has direct implications for the
summability of divergent series (see section 7.6).

7.1.3 Potentials with degenerate minima

The preceding discussion does not immediately apply to the case of potentials
with degenerate minima because no solution can be found that starts from a
minimum and return to the same minimum. However, let us consider such a
potential as the limit of a potential which has two minima at which the values
of the potential are very close and assume that we have expanded around the
relative minimum. From the explicit form of the action, we see that the classical
action has a limit that is twice the action (1.19) of the instanton that connects
the two minima of the potential:

A = 2

∫ +∞

−∞
dt q̇2c (t) = 2

∫ +q0

−q0

dq
√

2V (q) .

Alternatively, one can verify that the same result is obtained when one starts
from the absolute minimum of the potential. The asymptotic configuration has
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converges to the succession of an instanton and its time reversed, often called
anti-instanton.
As a consequence, even though we consider here a stable situation, the action

of the instanton is positive like in the metastable situation, a problem that
requires a deeper analysis. This is the source of serious difficulties when one
tries to sum the perturbation series. The solution requires a multi-instanton
analysis [27, 5, 6].

Gaussian integration. One verifies that the amplitude in front of the expres-
sion (7.8) diverges the degenerate limit. This result can be easily understood.
When the values at the two minima approach each other, the time spent close
to the second minimum of the potential by the classical trajectory correspond-
ing to the instanton solution diverges: the instanton decomposes in the sequel
of an instanton and an anti-instanton, each with its own collective coordinate:
therefore, fluctuations which tend to change this time leave the action almost
stationary. Correspondingly one eigenvalue of the operator δ2S(qc)/δqδq goes
to zero, and this explains the divergence of expression (7.8) in this case. To ob-
tain the correct answer, one must introduce a second time collective coordinate
to integrate over these fluctuations.

Non-Abelian gauge theories. [28] We discuss in the coming sections the ap-
plication of these methods to quantum field theory. However, anticipating this
discussion, let us point out that in non-Abelian gauge theories the classical
vacuum has a periodic structure (section 6.3) and the degeneracy is lifted by
instantons. In the same way as for the periodic cosine potential, the semi-
classical contributions to the large order behaviour are governed by instanton-
anti-instanton configurations.

7.2 Scalar field theory

In chapter 3, we have shown how to evaluate the contributions of instantons
to the decay rate of metastable states. These results can be applied to large
order behaviour estimates. In a general scalar boson field theory, if instanton
solutions can be found, the same arguments lead to

{

Z(n)(x1, . . . , xn)
}

k
∼

k→∞

∑

dominant
saddle points

Cn(x1, . . . , xn)k
b−1A−kk! , (7.11)

in which

(i) A is the instanton action, which is in general complex;
(ii) b = 1

2 (n+ δ) and δ is the number of symmetries broken by the classical
solution;
(iii) Cn(x1, . . . , xn), which does not depend on k, contains the whole depen-

dence in the external arguments.
In the case of the φ4 field theory, the discontinuity across the cut of the

n-point function reads (equation (3.22), note the change in notation A 7→ −A)

disc. Z(n)(x1, . . . , xn) ∼
g→0−

(

A

2π

)d/2

Ω
eA/g

(−g)(d+n)/2
Fn(x1, . . . , xn) (7.12)
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Table 7.1

The coefficients βk of the coupling constant RG function β(g) divided by the large
order estimate for the O(N) symmetric (φ2)23 field theory.

k 2 3 4 5 6 7

N = 0 3.53 1.55 1.185 1.022 0.967 0.951

N = 1 3.98 1.75 1.32 1.120 1.050 1.023

N = 2 4.82 2.09 1.53 1.29 1.20 1.15

N = 3 6.14 2.58 1.86 1.55 1.41 1.35

with
Ω =

(

detM ′M−1
0

)−1/2

ren

and

Fn(x1, . . . , xn) = md+n(d−2)/26n/2
∫

ddx0

n
∏

i=1

f
(

m(xi − x0)
)

. (7.13)

Using previous arguments, we can immediately translate this result into a large
order behaviour estimate for correlation functions

{

Z(n)(x1, . . . , xn)
}

k
=

1

2iπ

∫ 0

−∞

dg

gk+1
discZ(n)(x1, . . . , xn)

and, therefore,

{

Z(n)(x1, . . . , xn)
}

k
∼

k→∞

1

2iπ

Ω

(2π)d/2
Fn(x1, . . . , xn)

Γ
(

k + (d+ n)/2
)

An/2+k
.

(7.14)

Example: the renormalization group β-function in the (φ2)2 field theory in
dimension 3. The large order behaviour has been determined by solving the
field equations numerically to determine the classical action A [15] and then by
evaluating the determinant [31]. The predictions of the asymptotic formulae
have been compared with the terms of the series which have been calculated.
The agreement is quite reasonable and gives us confidence that the large order
behaviour estimates are indeed correct (see table 7.1).

7.3 The φ4 field theory in four dimensions

As a by-product of the calculation of the instanton contribution in sections 5–
5.3, we can evaluate the semi-classical contribution to the large order behaviour
in the φ4 field theory in four dimensions [16, 17]. However, because the theory
is exactly renormalizable, it has been found out that, as a consequence of their
large momenta properties, individual diagrams at order k grow themselves like
k!, introducing some new complications in the large order behaviour analysis
[29]. Moreover, IR singularities in the massless theory also yield contributions
of order k!, but with a different sign [30].
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7.3.1 Semi-classical contribution

The instanton contribution to the large order behaviour is given by

{

Γ(n)(p1, . . . , pn)
}

k
=

1

π

∫ 0

−∞

ImΓ(n)(p1, . . . , pn)

gk+1
dg . (7.15)

This yields a result of the form

{

Γ(n)(p1, . . . , pn)
}

k
∼

k→∞
Cn(p1, . . . , pn)

∫ 0− e8π
2/3g

(−g)n+5/2

dg

gk+1
. (7.16)

After integration, one obtains

{

Γ(n)(p1, . . . , pn)
}

k
∼ Cn(p1, . . . , pn)(−1)k

(

3

8π2

)n+3+k

Γ(k + n/2 + 5/2).

(7.17)
From this expression, it is straightforward to derive the large order behaviour of
various RG functions in, for example, the fixed momentum subtraction scheme.
A comparison between large order behaviour and explicit calculations can be
found in table 7.2, in the case of the RG β-function.

Table 7.2

The coefficients βk of the RG β-function divided by the asymptotic estimate, in the
case of the O(N) symmetric φ4

4 field theory.

k 2 3 4 5

N = 1 0.10 0.66 1.08 1.57

N = 2 0.06 0.49 0.87 1.32

N = 3 0.04 0.33 0.66 1.09

The large order behaviour of Wilson–Fisher’s ε-expansion, which is impor-
tant for the theory of critical phenomena, can instead only be guessed at be-
cause the RG functions in the minimal subtraction scheme vanish at leading
order. A calculation of the next order would be necessary and this has not yet
been done. Since at leading order the fixed point constant g∗(ε) is

6g∗(ε) ∼ 48π2ε/(N + 8) ,

except if for some unknown reason the accident of leading order persists, the ε-
expansion is likely to involve a factor (−3/(N+8))kk! multiplied by an unknown
power of k.
Finally, note that in the massive theory the calculation is slightly modified

because the integral over the collective dilatation coordinate is cut at a scale
of order m

√
k (see section 5.4).
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7.3.2 UV and IR (renormalons) contributions

Implicit in the large order behaviour calculation is the assumption that the
singularities of correlation functions come entirely, in the neighbourhood of
the origin, from barrier penetration effects. If this assumption is certainly
correct in quantum mechanics, if we have convincing evidence that it is valid for
super-renormalizable theories, it is much more questionable for renormalizable
theories, not to mention massless renormalizable theories. Indeed, individual
diagrams can then have a k! behaviour while the k! of the semi-classical analysis
comes from the number of Feynman diagrams.
We first explain the large momentum problem [29] and then the IR problem

of massless theories [30].

UV singularities: renormalons [29]. If the semi-classical analysis is valid for
the regularized field theory, it becomes somewhat formal for the renormalized
theory in the infinite cut-off limit. We have already seen in section 5.3 that even
in the naive calculation, non-trivial questions arise about the global RG prop-
erties of the theory. Direct investigation of the perturbative expansion raises
new questions and suggests that UV singularities yield additional contributions
to the large order behaviour.
Let us consider the (φ2)2 field theory in dimension 4, in which φ is an N -

component vector, and the model has an O(N) symmetry,

S(φ) =
∫

d4x

[

1

2
(∂µφ(x))

2 +
m2

2
φ2(x) +

g

4

(

φ2(x)
)2
]

. (7.18)

It can be shown that at order 1/N in the large N expansion the renormalized
two-point function is given by a divergent integral because the integrand has a
pole, corresponding to the Landau ghost. We briefly recall the argument. The
1/N contribution to the two-point function in the massive renormalized theory
is

F2(p) =
2g

(2π)4

∫

d4q

[(p+ q)2 +m2] [1 +NgBr(q)]
− subtractions , (7.19)

where the renormalized ‘bubble’ diagram is given by

Br(p) =
1

(2π)4

∫

d4q

[(p+ q)2 +m2] (q2 +m2)
− subtraction . (7.20)

For large momenta, Br(p) behaves like

Br(p) ∼
1

8π2
ln(m/p) , p → ∞ . (7.21)

Therefore, the sum of the bubble diagrams that appears in expression (7.19) has
a singularity for g small (which justifies the large momentum approximation)
and positive at momentum

|p| ∼ m e8π
2/Ng for g → 0+ . (7.22)
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Since the theory is IR free, and not UV asymptotically free, this singularity
occurs for positive values of the coupling constant. Once this sum of bubbles
is inserted into expression (7.19), it produces a cut for g small and positive.
More precisely, after subtraction, and for q large, the integrand of F2 at large
momenta behaves like

∫

|q|≫1

dq

q3

[

1 +
Ng

8π2
ln(m/q)

]−1

+ · · · · (7.23)

The change of variables t = ln(q/m) transforms the expression (7.23) into

∫ ∞
dt e−2t 1

1−Ngt/(8π2)
. (7.24)

This yields an imaginary contribution to the correlation functions for g small
and positive of the form exp(−16π2/Ng). Alternatively, by expanding expres-
sion (7.19) in powers of g, we obtain the contribution of individual diagrams
containing bubble insertions. These diagrams behave like (N/16π2)kk! at large
order k. Therefore, in contrast to super-renormalizable theories in which an
individual diagram behaves like a power in k and the k! comes from the number
of diagrams, here some individual diagrams give a k! contribution, without the
sign oscillations characteristic of the semi-classical result.
Further investigations show that if a non-perturbative contribution exists, it

should satisfy the homogeneous RG equations. Let us for simplicity consider
the case of a dimensionless ratio of correlation functions R(p/m, g) without
anomalous dimensions,

(

m
∂

∂m
+ β(g)

∂

∂g

)

R(p/m, g) = 0 . (7.25)

The RG equation tells us that the function R(p/m, g) is actually a function of
only one variable s(g)p/m, in which s(g) then satisfies

β(g)s′(g) = s(g), (7.26)

which after integration yields

s(g) ∼ exp

[∫ g dg′

β(g′)

]

. (7.27)

For g small, s(g) behaves like

β(g) = β2g
2 +O

(

g3
)

with β2 =
N + 8

8π2
, (7.28)

s(g) ∝
g→0

g−β3/β
2
2 e−1/β2g . (7.29)
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Since the correlation function depends only on the mass squared, only s2(g)
enters the calculation, and the contribution to the large order behaviour has
the form

∫

0

s(g)

gk+1
dg ∝ (β2/2)

kΓ(k + 1 + 2β3/β
2
2), (7.30)

a result which coincides in the large N limit with the contribution that we
obtained from the set of bubble diagrams.

This potential contribution has to be compared with the semi-classical result
(7.17).

These problems are in fact related to the question of the existence of the
renormalized φ4 field theory in four dimensions. If the theory does not exist,
then probably the sum of perturbation theory is complex for g positive, and
these singular terms, sometimes called renormalon effects, are the small cou-
pling evidence of this situation. More generally, the existence of renormalons
shows that the perturbation series is not Borel summable and does not define
unique correlation functions.

Finally, we note that, at leading order in the 1/N expansion, for the Wilson–
Fisher ε-expansion, and thus also for suitably defined RG functions, the renor-
malon singularities cancel. We conjecture on this basis and on the basis of the
numerical evidence that the ε-expansion is free of renormalon singularities.

Massless renormalizable theories [30]. We again illustrate the problem with
the (φ2)2 field theory in the large N limit. We now work in a massless theory
with fixed cut-off Λ. We evaluate the contribution of the small momentum re-
gion to the mass renormalization constant. The bubble diagram (7.20) behaves
like

I(p) ∼ 1

8π2
ln(Λ/p).

The sum of bubbles yields a contribution to the mass renormalization propor-
tional to

∫ Λ d4q

q2
(

1 +NgI(q)
) =

∫

d4q

q2
(

1 + N
8π2 g ln(Λ/q)

) .

Expanded in powers of g this yields a contribution of order (−1)k(N/16π2)kk!
for large order k. This contribution has the sign oscillations of the semi-classical
term. More generally for finite N one finds (−β2/2)kk!. IR singularities yield
an additional Borel summable contribution to the large order behaviour.

For massless, but asymptotically free theories the role of the IR and UV
regions are interchanged. UV renormalons are expected yielding additional
singularities to the Borel transform on the real negative axis, while IR contri-
butions destroy Borel summability. When these theories have real instantons
like QCD or the CP (N − 1) models (see sections 6.2, 6.3), the Borel transform
has also semi-classical singularities on the real positive axis.
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7.4 Field theories with fermions

In the case of boson field theories, we have related the large order behaviour
of perturbation theory to the decay of a metastable vacuum for, in general,
unphysical values of the coupling constant. We expect some modifications in
the case of self-interacting fermions, or of fermions interacting with bosons
that themselves have no self-interaction. (The first case can be reduced to the
second one by introducing an auxiliary boson field but additional difficulties
then arise.) Indeed, the Pauli principle makes the decay of the false vacuum
more difficult because several fermions cannot be in the same state to generate
a classical field, and this effect is especially strong in low dimensions. Note that
if the bosons have self-interactions, these interactions will, in general, drive the
decay of the vacuum, and the fermions may no longer play a role.
Seen from the point of view of integrals, the difference between fermions and

bosons is also immediately apparent. We have shown that the simple integral
counting the number of Feynman diagrams, which is also the φ4 field theory in
d = 0 dimensions, already has the characteristic k! behaviour at large orders.
Let us instead consider a zero-dimensional fermion theory, that is, an integral
over a finite number of fermion degrees of freedom:

I(λ) =

∫ N
∏

i=1

dξ̄idξi exp
[

ξ̄iDijξj + λCijkl ξ̄iξ̄jξkξl
]

. (7.31)

The quantities ξi and ξ̄i are anticommuting variables andDij and Cijkl are a set
of numbers. Because we assume a finite number of anticommuting variables, the
expansion of the exponential yields a polynomial and thus I(λ) is a polynomial
in λ.

7.4.1 Example of a Yukawa-like field theory

We now consider the vacuum amplitude or partition function of the Yukawa-
like theory with Dirac fermions ψ̄(x), ψ(x), and a scalar boson φ(x) without
self-interaction:

Z =

∫

[dφ(x)]
[

dψ̄(x)
]

[dψ(x)] exp
[

−S(φ, ψ̄, ψ)
]

, (7.32)

in which the action is

S(φ, ψ̄, ψ) =
∫

ddx
[

−ψ̄ (6∂ +M + λφ)ψ + 1
2 (∂µφ)

2
+ 1

2m
2φ2
]

, (7.33)

where we choose λ > 0. In this form, g = λ2 is a loop expansion parameter
and the partition function a series in g. Since a fermion field has no classical
limit, the expression (7.32) is not very well suited to the study of the vacuum
decay. In fact, we expect the fermion fields to generate an effective interaction
for the boson field φ(x), and this effective interaction will lead to the decay of
the vacuum. This suggests that we should integrate over the ψ and ψ̄ variables,
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and study the instantons of the effective theory for φ(x). In addition, the zero-
dimensional example has shown that the fermion integration gives some hints
about the analytic structure of the theory. After the integration over ψ and ψ̄,
we obtain

Z =

∫

[dφ(x)] det
{

[6∂ +M + λφ(x)] [6∂ +M ]
−1
}

× exp

[

− 1
2

∫

ddx
(

(∂µφ)
2
+m2φ2

)

]

, (7.34)

where we have normalized the integral with respect to the free theory.

We are faced with a new difficulty arising from the integration, the effective
action now is no longer local in φ(x), and leads to non-local field equations.
However, because we are concerned only with the determination of the large
behaviour, we can simplify the effective action. The determinant generated
by the fermion integration is, at least for the class of relevant φ(x) fields, an
entire function of the coupling constant λ. As a consequence, essential singu-
larities can only be generated by the infinite range of the φ-integration. It is
thus sufficient to calculate the contribution to the functional integral of large
fields φ(x) [37]. This situation has to be contrasted with what would have hap-
pened if ψ(x) and ψ̄(x) would have been commuting variables. The integration
then would have generated the inverse of the determinant, a function that has
singularities for all zeros in λ of the determinant. These singularities would
have yielded essential singularities in the coupling constant after integration.
Finally, we note that this difference, determinant versus inverse determinant,
is responsible for the minus sign for each fermion loop in perturbation theory,
which allows for cancellations.

7.4.2 The determinant

The contribution to the action generated by the fermion integration can be
written as

Σ(φ) ≡ − ln det (1+ λΞ) (7.35)

with

Ξ = (6∂ +M)−1φ(x),

an expression that, for instanton purpose, we have to evaluate for large (and
smooth enough) fields φ decaying at infinity.

The perturbative expansion of the expression (7.35) involves the successive
traces of Ξ. Both trΞ and trΞ2 are divergent for d ≥ 2 and have to be
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renormalized:

trΞ =

∫

ddxφ(x)
1

(2π)d
trγ

∫

ddp

i6p +M
=

∫

ddxφ(x)
NM

(2π)d

∫

ddp

p2 +M2
,

trΞ2 =

∫

ddxddy φ(x)φ(y)
1

(2π)2d
trγ

∫

ddp ddq
ei(x−y)p

(i6q +M)(i(6p + 6q) +M)
,

=

∫

ddxddy φ(x)φ(y)
N

(2π)2d

∫

ddp ddq
ei(x−y)p(M2 − q2 − pq)

(q2 +M2)((p+ q)2 +M2)
,

= −
∫

ddxφ2(x)
N

(2π)d

∫

ddq

q2 +M2

+

∫

ddxddy φ(x)φ(y)
N

(2π)2d

∫

ddp ddq ei(x−y)p(p2/2 +M2)

(q2 +M2)((p+ q)2 +M2)
,

where trγ means trace over Dirac γ-matrices and N = trγ 1. We can choose
the counter-terms such that

trΞren. = 0 ,

trΞ2
ren. =

∫

ddxddy φ(x)φ(y)
N

(2π)2d

∫

ddp ddq ei(x−y)p(p2/2 +M2)

(q2 +M2)((p + q)2 +M2)
.

Then, trΞ3 and trΞ4 are only divergent for d ≥ 4. Since the higher order
traces are finite, the operator Ξ has a discrete spectrum. We denote by ξn(φ)
the eigenvalues. The eigenvalues accumulate at the origin. Then, for d < 4,

Σren.(φ) = −
∑

n

[

ln
(

1 + λξn(φ)
)

− λξn(φ) +
1
2λ

2ξ2n(φ)
]

− 1
2λ

2 trΞ2
ren.

This expression shows that the determinant is an entire function of λ.

7.4.3 Evaluation of the fermion determinant for large fields

We now evaluate the large field or large λ contribution [37]. For convenience
we set

M + λφ(x) = κV (x),

and we differentiate Σ with respect to the parameter κ using the identity

d(ln detΩ) = tr dΩΩ−1.

We find

Σ′(κ) = − trγ

∫

ddxV (x) 〈x| [6∂ + κV ]
−1 |x〉 .

In the large V (and V smooth enough) or equivalently large κ limit, the operator

[6∂ + κV ]
−1

tends toward a local operator and the operator V can be replaced
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by its expectation value V (x) in the state |x〉. The calculation of the matrix
element is then simple:

〈x| [6∂ + κV ]
−1 |x〉 = 1

(2π)d

∫

ddp trγ(i6p + κV (x))−1

=
N

(2π)d
κV (x)

∫

ddp

p2 + κ2V 2(x)

=
N

(4π)d/2
Γ(1− d/2)κd−1V (x)|V (x)|d−2.

We then integrate over κ. Substituting κV (x) 7→M +λφ(x), neglecting M for
λφ(x) large, we obtain the large field behaviour:

Σ(φ) ∼ N

2

Γ(−d/2)
(4π)d/2

∫

ddx |M + λφ(x)|d ∼ N

2

Γ(−d/2)
(4π)d/2

λd
∫

ddx |φ(x)|d.
(7.36)

This expression shows that the determinant is an entire function of order d in
λ or of order d/2 in g = λ2.
For d even, the expression diverges and the divergence is cancelled by the

counter-terms required to render the one-loop diagrams finite.
We can then examine various dimensions of interest. For d = 2, the mass

counter-term has to be added and on finds

Σ(φ) ∼ Nλ2

4π

∫

d2xφ2(x) ln |φ(x)|. (7.37)

For d = 3,

Σ(φ) ∼ N

12π
λ3
∫

d3x |φ(x)|3 (7.38)

and, finally, for d = 4 a φ4 coupling counter-term is required and the result
becomes

Σ(φ) ∼ − N

32π2
λ4
∫

d4xφ4(x) ln |φ(x)|. (7.39)

In the latter dimension, the induced term leads to an unstable local theory.

7.4.4 The large order behaviour

We can now study the essential singularity of the theory at λ = 0 small from
the properties of the effective local boson action

Seff(φ) =

∫

ddx

[

1

2
(∂µφ(x))

2
+

1

2
m2φ2(x) +

N

2

Γ(−d/2)
(4π)d/2

λd|φ(x)|d
]

, (7.40)

where the fermion term has to be replaced by its renormalized form for d even.
Some care is required in handling this expression since the fermion term is only
asymptotic and the exact determinant is an entire function of the coupling λ.
For d < 4 the additional contribution leads to a stable theory and instan-

tons correspond to complex values of λ while for d = 4 the additional term
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renders the theory unstable and instantons exist for λ > 0. However, in d = 4
renormalization requires a φ4 interaction that, generically, dominates the large
order behaviour.

Formal derivation. Since the action (7.40) is not a regular function of φ and
is unrenormalized, the arguments that follow are somewhat formal and the
problem has to be analysed more carefully.
We now assume the existence of an instanton solution. We then rescale the

field φ to factorize the g-dependence in front of the classical action:

φ(x) 7→ φ(x)λ−d/(d−2). (7.41)

The classical action calculated for a solution takes thus the form

S(φc) = (A/λ2)d/d−2, (7.42)

where A is constant. At this point it is useful to introduce the loop expansion
parameter g = λ2. Introducing this form into the Cauchy representation, we
find

Zk ∼
k→∞

∫

0

e−(A/g)d/d−2

gk−1
dg . (7.43)

The integration yields the large order estimate

Zk ∼ A−kΓ [k(d− 2)/d] . (7.44)

We observe that, as expected, this theory is less divergent than a purely boson
field theory. The boson result is recovered (in a cut-off field theory) for d large,
because the Pauli principle becomes decreasingly effective when the dimension
increases.

Dimension d = 3. This is a simple situation. The action becomes

Seff(φ) =

∫

d3x

[

1

2
(∂µφ(x))

2 +
1

2
m2φ2(x) +

N

12π
λ3|φ(x)|3

]

.

Since the problem of analytic continuation in λ is not simple, we use another
method. We expand the partition function in powers of λ and estimate directly

ζk =
(−1)k

k!

(

N

12π

)k

λ3Ik

with

Ik =

∫

[dφ]

(∫

d3x |φ(x)|3
)k

exp

[

− 1
2

∫

d3x
(

(∂µφ(x))
2
+m2φ2(x)

)

]

.

We have to look for the minimum of the quantity

Σ(φ) = 1
2

∫

d3x
(

(∂µφ(x))
2
+m2φ2(x)

)

− k ln

∫

d3x |φ(x)|3.
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To extract the k dependence we set φ 7→ k1/2φ and obtain

Σ(φ) = 1
2k

∫

d3x
(

(∂µφ(x))
2
+m2φ2(x)

)

− k ln

∫

d3x |φ(x)|3 − 3
2k ln k .

The corresponding field equation is

(−∇2
x +m2)φ(x) − 3

I3
sgn(φ(x))φ2(x) = 0 ,

where we have defined

I3 =

∫

d3x |φ(x)|3. (7.45)

This equation has instanton solutions φc. Note that the constraint (7.45)
changes the determinant. Then, integrating the field equation, we conclude
that

1
2k

∫

d3x
(

(∂µφc(x))
2
+m2φ2c(x)

)

= 3
2k .

We conclude
Ik ∝ [I3(φc)]

k e3k/2 ln k−3k/2

and, thus,

ζk ∝ (−1)k

(

NI3
√
2

12π

)k

Γ(k/2)λ3k.

The large order behaviour of the coefficient of gk is then

Zk ∝
(

NI3
√
2

12π

)2k/3

Γ(k/3),

a result consistent, but more explicit than the result (7.44).
The method can be generalized to generic values of d.

Dimension d = 2 and d = 4. For d = 2, the expression (7.44) becomes

Zk ∝ A−k(ln k)k, (7.46)

in agreement with rigorous bounds that yield

|Zk| < (k! )ε for all ε > 0 . (7.47)

For d = 4, the expression (7.44) is also modified by the same kind of logarithmic
factor

Zk ∝ A−k(ln k)kΓ(k/2). (7.48)

However, in d = 4 for renormalization purpose a φ4 interaction has to be added
to the action (7.33), as the expression (7.40) shows. Then, in a loop expansion
the boson contributions dominates the large order behaviour.
Alternatively, it is also consistent with renormalization to consider the φ4

coupling as being of order g2, as expression (7.40) shows. Then, both interac-
tion terms ψ̄ψφ and φ4 give similar contributions to the large order behaviour,
up to powers of logarithm.
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7.4.5 The QED problem

A potentially interesting application of the fermion analysis is QED in four
dimensions. The action has formally the same structure, but one additional
complication then arises. The fermion action is

SF =

∫

ddx ψ̄(x) (6D+m)ψ(x),

where
6D = Dµγµ , Dµ = ∂µ + ieAµ .

(Dµ is the covariant derivative). The fermion integration yields the contribution
to the action

Σ = − ln det (6D +m) . (7.49)

However, this expression is gauge invariant and the concept of large gauge de-
pendent quantity Aµ is not meaningful. Moreover, the gauge degree of freedom
of the gauge field cannot be considered as slowly varying. Thus, one must fix
the gauge. It is convenient to choose a gauge linear in Aµ and covariant. This
leads to the choice

∂µAµ(x) = 0 ⇒ [Dµ, Aµ] = 0 .

In d = 2 dimensions, we already know from the solution of the massless
Schwinger model, and from the bosonisation of the massive model, that the
origin is not an essential singularity: for m = 0 the determinant can be calcu-
lated exactly and is related to the Abelian anomaly:

Σ(A) ≡ − ln det(6D) = − e2

2π

∫

d2xA2
µ(x).

More generally, on the basis of studying the determinant for special gauge
fields, it has been conjectured, that the determinant is equivalent for large e to
[38, 39]

Σ(A) ∼ −C(d)
∫

ddx |eAµ(x)|d ; C−1(d) = d(4π)(d−1)/2Γ
(

(d+ 1)/2
)

.

This expression is local in the ∂µAµ = 0 gauge but non-local otherwise. It
agrees for d = 2 with the exact result obtained from the Abelian anomaly
(C(2) = 1/2π). For d = 4, the case of physical interest, C(4) = 1/12π2. The
effective classical field theory then is scale invariant. Arguments related to
conformal invariance can be used to construct some ansatz for the instanton
solutions. Two kind of solutions have been explored [38, 39]. Taking the
minimal action solution one obtains an evaluation of the form

Zk ∼ (−1)kA−kΓ(k/2) , A = 4.886 , (7.50)

the expansion parameter being α = e2/4π. It should be pointed out that this
evaluation is probably not very useful as a practical mean to predict new orders
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in QED for several reasons. First, the theory is not asymptotically free and
thus has a potential renormalon problem, which can be understood by inserting
in a Feynman diagram the one-loop corrected photon propagator. Second, the
cancellation coming from the sign of fermion loops does not seem to be very
effective at low orders. Therefore, an alternative calculation, which leads to a
large order behaviour at a fixed number of fermion loops, seems to be more
useful. Predictions of this kind made for diagrams with one fermion loop, seem
to agree well with numerical estimates.

7.5 Divergent series, Borel summability

As we have shown, most perturbative expansions in quantum field theory lead
to divergent series. An important issue is whether a function can be determined
from the knowledge of such a series. This is the case, in particular, if the series
is Borel summable.

7.5.1 Asymptotic series

Let us consider a function f(z), analytic in the sector S of the complex plane
defined by

|Arg z| ≤ α/2 , |z| ≤ |z0|. (7.51)

We say that f(z) has in S the asymptotic expansion

f(z) =

∞
∑

0

fkz
k (7.52)

if the series in the right hand side of (7.52) diverges for all z 6= 0 and if in S
the truncated series satisfies the bound

∣

∣

∣

∣

∣

f(z)−
N
∑

k=0

fkz
k

∣

∣

∣

∣

∣

≤ FN+1|z|N+1 ∀ N . (7.53)

(This implies FN ≥ |fN |.) Though the series (7.52) diverges, it is possible to
use it to estimate the function f(z) for |z| small. At |z| fixed, we can look for a
minimum in the bound (7.53) when N varies. If |z| is small enough, the bound
first decreases with N and then, since the series is divergent, finally increases.
If we truncate the series at the minimum, we get the best possible estimate of
f(z), with a finite error ε(z). Let us assume for definiteness that the coefficients
FN have the form

FN =M A−N (N !)β . (7.54)

We can then estimate ε(z) explicitly and find

ε(z) = min
{N}

FN |z|N ∼ exp
[

−β(A/|z|)1/β
]

. (7.55)

Therefore, an asymptotic series does not in general define a unique function.
Indeed, if one function has been found that satisfies the bounds (7.53), we can
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add to it any function analytic in the sector (7.51) and bounded by ε(z) in the
whole sector. The new function still satisfies the bounds (7.53). However, there
is one situation in which the asymptotic series defines a unique function. If the
angle α satisfies: α ≥ πβ, then a classical theorem about analytic functions
tells us that a function analytic in the sector and bounded by ε(z) in the whole
sector vanishes identically.

7.5.2 Borel transformation

Loopwise expansion. Even though most arguments can be easily generalized,
from now on we specialize to the case β = 1, which is typical for the steepest
descent method and, thus, also for perturbative expansions in quantum field
theory in a loopwise expansion. One then finds

α ≥ π . (7.56)

In the marginal case in which the series is asymptotic only in the open interval
|Arg z| ∈ (−πβ/2, πβ/2), additional conditions have to be imposed to prove
uniqueness.

Under the condition (7.56), the function f(z) is uniquely defined by the
series. Moreover, there then exist methods to ‘sum’ the series, which means
that one can derive from the knowledge of the series a sequence converging to
the function. One set of methods is based upon the Borel transformation.
The Borel transform Bf (z) of f(z) is defined by

Bf (z) =

∞
∑

0

Bkz
k ≡

∞
∑

0

fk
k!
zk. (7.57)

The bounds (7.53) and the form (7.54) imply

|fk/k!| < M A−k. (7.58)

Thus Bf (z) is analytic at least in a circle of radius A and uniquely defined by
the series. Furthermore, in the sense of formal power series

f(z) =

∫ ∞

0

e−tBf (zt)dt . (7.59)

As a consequence of the inequality (7.56), it can be shown that Bf (z) is also
analytic in a sector

|Arg z| ∈ [0, 12 (α− π)[ , (7.60)

and does not increase faster than an exponential in the sector, so that integral
(7.59) converges for |z| small enough and inside the sector

|Arg z| < α/2 .

In addition, it can be shown that the right hand side of equation (7.59) satisfies
a bound of type (7.53). Hence, this integral representation yields the unique
function which has the asymptotic expansion (7.52) in the domain (7.51).
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7.6 Large order behaviour and Borel summability

We have learned that, for a large class of potentials in quantum mechanics and
for a number of field theories, instanton contributions for small values of the
loop expansion parameter g behave like

Cg−b e−a/g . (7.61)

The corresponding contribution to the perturbative coefficients for large order
k of the loop expansion is then,

(C/π)kb−1akk! . (7.62)

Therefore, the coefficients Bk of the Borel transform B(z) (equation (7.57))
behave as

Bk ∼ (C/π)kb−1ak. (7.63)

This asymptotic estimate tells us that the singularity of B(z) closest to the
origin is located at the point z = 1/a. More precisely, the Borel transform
B(z) has an algebraic singularity of the form

C

π

∫

0

dg e−a/g

gb+1

∑

k

1

k!

(

z

g

)k

=
C

π

∫

0

dg e−(a−z)/g

gb+1
= (C/π)Γ(b)(a− z)−b.

Therefore, the integral (7.59) does not exist if the classical action A = 1/a
is positive. The perturbation series in such theories is not Borel summable.
This observation has the following implications when applied to the various
situations we have encountered:

(i) The field equations have no real instanton solutions. This is, in particular,
the case if we have expanded around the unique absolute minimum of the
potential. If complex instanton solutions exist, the corresponding classical
action is non-positive, and the perturbative expansion is presumably Borel
summable. It is only a presumption because various features of the perturbative
expansion, invisible at large orders, could prevent still Borel summability. The
perturbative expansion could contain for instance contributions all of the same
sign, growing faster than any exponential of the order k, but much smaller than
k! (for example

√
k!). Then, B(z) would grow too rapidly for large argument

z (lnB(z) ∼ z2 in the example) and the Borel integral would not converge at
infinity.
(ii) We have found real instantons in the theory because we expanded around

a relative minimum of the potential: the perturbative expansion is not Borel
summable.
However, in this case, we can provide one additional piece of information

useful for determining the solution: the unstable situation can be considered as
coming from a stable situation by analytic continuation. Therefore, a possible
solution could be to integrate in the Borel transform just above the cut which is
on the real positive axis. As a consequence, from a real perturbative expansion
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we would obtain a complex result, but this is exactly what we expect. It is easy
to verify that the imaginary part is for g small exactly what we have calculated
directly. Actually, this is only the solution of the problem in the simplest case,
when no other instanton singularities cross the contour of integration in the
analytic continuation.
(iii) There are real instantons connecting degenerate classical minima.

The theory is not Borel summable. Integration above or below the axis yields
a complex result for a real quantity. This cannot be the correct prescription.
The half sum of the integral above and below is real, but even in the sim-
ple example of the quartic double well-potential, one can verify numerically,
and argue analytically, that it is not the correct solution. In the example of
one-dimensional potentials that are entire functions, one can show that the
additional information needed to determine the sum of the perturbative ex-
pansion is provided by the consideration of multi-instanton contributions. The
corresponding problem has not been solved in field theory examples yet.

Remarks. We have given field theory examples of such a situation in sections
6.2, 6.3: the two-dimensional CP (N − 1) models and four-dimensional SU(2)
gauge theory. In these models real instantons connect degenerate minima of the
classical action and the corresponding classical action is positive. Therefore,
the coefficients of the perturbative expansion contain a non-Borel summable
contribution. This contribution does not necessarily dominate the large order
behaviour, because, as the example of of the φ44 massless field theory (see
section 7.3.2) illustrates, when a field theory is classically scale invariant, the
perturbative expansion might be dominated by contributions unobtainable by
semi-classical methods, and related to the UV or IR singularities.

7.7 Practical summation methods

Various practical summation methods rely upon a Borel transformation.
The Borel transformation reduces the problem of determining the function to

the analytic continuation of the Borel transform. The Borel transform is given
by a Taylor series in a circle and an analytic continuation of the series on the
real positive axis is required. This analytic continuation can be performed by
various methods and the optimal choice depends somewhat on the additional
information one possesses about the function. We give here two examples.

We give also an example of a method that does not involve a Borel transfor-
mation, the order-dependent mapping (ODM).

7.7.1 Padé approximants

In the absence of a precise knowledge of the location of the singularities of the
Borel transform in the complex plane, one can use the Padé approximation
[32, 33]. From the series, one derives Padé approximants which are rational
functions PM/QN satisfying

Bf (z) =
PM (z)

QN (z)
+O

(

zN+M+1
)

, (7.64)



106 Chapitre 7 : Perturbation Series at Large Orders. Summation Methods

where PM and QN are polynomials of degrees M and N , respectively. If one
knowsK+1 terms of the series, one can construct all [M,N ] Padé approximants
with N+M ≤ K. This method is well adapted to meromorphic functions. The
main disadvantage of the method is that for a rather general class of functions,
Padé approximants are known to converge only in measure and thus spurious
poles may occasionally appear close to or on the real positive axis.
Even if Padé approximants converge, this property may be the source of

some instabilities in the results, and, therefore, make the empirical evaluation
of errors difficult.

7.7.2 Conformal mapping

If the domain of analyticity of the Borel transform is known, one can find a
mapping that preserves the origin, and maps the domain of analyticity onto
a circle. In the transformed variable, the new series converges in the whole
domain of analyticity.
As an example, we assume that the Borel transform is analytic in a cut-plane,

the cut running along the real negative axis from −∞ to −1/a. To map the
cut-plane onto a circle of radius 1, we set [34, 35]

z 7→ u, u(z) =

√
1 + az − 1√
1 + az + 1

. (7.65)

From the original series for the Borel transform, we derive a series in powers
of the new variable u:

Bf (z) =
∑ fk

k!
zk, Bf [z(u)] =

∞
∑

0

Bku
k. (7.66)

Introducing this expansion in the Borel transformation, we obtain a new ex-
pansion for f(z),

f(z) =

∞
∑

0

BkIk(z) , (7.67)

in which the functions Ik(z) have the integral representation:

Ik(z) =

∫ ∞

0

e−t [u(zt)]
k
dt . (7.68)

It is possible to study the natural domain of convergence of this new expansion.
One verifies that Ik(z) for k behaves large as [26]

Ik(z) ∼ exp
[

−3k2/3/(az)1/3
]

. (7.69)

Three situations can then arise:

(i) The coefficients Bk either decrease or at least do not grow too rapidly,

|Bk| < M eεk
2/3

for all ε > 0 .
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Then, the expansion (7.67) converges at least in the region

Re z−1/3 > 0 ⇒ |Arg z| < 3π /2 . (7.70)

In particular, this implies that the function f(z) must be analytic in the cor-
responding region which contains a part of the second sheet.
(ii) The coefficients behave like

Bk ∼ exp
(

ck2/3
)

for k large . (7.71)

The domain of convergence is, then,

Re z−1/3 > 1
3ca

1/3. (7.72)

This condition implies analyticity in a finite domain containing a part of the
second sheet since for |z| small, the right hand side is negligible.
(iii) The coefficients Bk grow faster than exp(ck2/3). This is quite possible

since the only constraint on the coefficients Bk is that the series (7.66) has
a radius of convergence 1. For instance the coefficients Bk could grow like
exp(ck4/5). In such a situation, the new series is also divergent. Such a situation
arises when the singularities on the boundary of the domain of analyticity are
too strong. One should map a smaller part of the domain of analyticity onto a
circle.

Application to the calculation of critical exponents. In the summation method
based on Borel transformation and mapping, it is easy to take into account the
large order behaviour. This is one reason why it has been used quite system-
atically in the framework of the φ4 field theory to calculate critical exponents
and other universal quantities [35, 36]. Critical exponents have been calculated
by applying variants of the Borel summation method to the known terms of
the perturbative expansion, that is, six successive terms in fixed dimension 3
and up to order ε5 for the ε-expansion.
Let us now summarize the information available in the φ4 field theory that

justifies the use of this summation method.

(i) The Borel summability of perturbation theory in the φ42 and φ43 theories
has been rigorously established.
(ii) The large order behaviour has been determined in all cases and compares

favourably with the first terms of the series available (see section 7.2).
(iii) Since all known instanton solutions in the φ4 theory give negative actions,

it is plausible that the Borel transform is analytic in a cut-plane, the location
and nature of the singularity closest to the origin being given by the large order
estimates.

Consequently, the methods based upon a Borel transformation and a confor-
mal mapping of the cut-plane onto a circle, have appeared as excellent candi-
dates to sum the perturbation series and the ε-expansion.
For completeness, let us finally give one example of a summation method not

based on a Borel transformation.
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7.7.3 Order dependent mappings (ODM)

The ODM method [40--44] requires, to be applicable, some knowledge (or ed-
ucated guess) of the analyticity properties of the function itself. As we have
discussed, the series diverge because the function has singularities accumulat-
ing at the origin. However, the strengths of the singularities have to decrease
fast enough for the function to have a series expansion. In the examples we
have met, the discontinuity of the function decreases exponentially near the
origin. The idea is then to pretend that the function is analytic, in addition
to its true domain of analyticity, in a small circle centred at the origin of ad-
justable radius ρ and to map this extended domain onto a circle centred at
the origin, keeping the origin fixed. If the function would really be analytic in
such a domain, the expansion in the transformed variable would converge in
the whole domain of analyticity and our problem would be solved. Since the
original series is in fact only asymptotic, the series in the transformed variable
is also asymptotic. However, as a result of this transformation, the coefficients
of the new series now depend on an adjustable parameter ρ.
Let us assume for instance that f(z) is analytic in a cut-plane. We then use

the mapping
z = 4ρu/(1− u)2. (7.73)

The transformed series has the form

f
(

z(u)
)

=
∞
∑

0

Pk(ρ)u
k, (7.74)

in which the coefficients Pk(ρ) are polynomials of degree k in the parameter
ρ. The kth order approximation is obtained by truncating the series at order
k, and choosing ρ as one of the zeros of the polynomial Pk(ρ). The zero
cannot actually be chosen arbitrarily, but roughly speaking must be the zero
of largest modulus for which the derivative P ′

k(ρ) is small. The idea behind
the method is the following: with the original series, the best approximation is
obtained by truncating the series at z fixed, at an order dependent on z such
the modulus of the last term taken into account is minimal. By introducing
an additional parameter, one modifies the situation: one can choose first the
order of truncation and then try to adjust the parameter ρ in such a way that,
at z again fixed, the last term taken into account is minimal.
The kth order approximant has the form

{f(z)}k =

k
∑

l=0

Pl(ρk) [u(z)]
l
, Pk(ρk) = 0 . (7.75)

It can be shown under some conditions that if the terms fk of the original series
grow like (k!)β then the sequence ρk decreases like 1/kβ. Such a method has
been successfully applied to test problems like the quartic anharmonic oscillator
and the imaginary cubic potential, and to one physical example, the hydrogen
atom in a strong magnetic field.
A review about various summation methods can also be found in reference

[45].
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